Concept explainers
Whether the equation of motion of the pendulum and the system is stable, neutrally stable or unstable.
Answer to Problem 4.68P
Explanation of Solution
Given:
A spring with stiffness k, and a damper with damping coefficient c, are attached to a pendulum of mass, m.
Concept used:
For an objects’ planar motion which rotates only about an axis perpendicular to the plane, the equation of motion can be written down using Newton’s Second Law.
Equation of Motion:
Where
Let the angular displacement be
The angular velocity,
Hence, the equation of motion of this object can be rewritten by substituting,
To find the equation of motion, the required unknowns are
The mass moment of Inertia, I about a specified reference axis is given as:
Where r = distance from the reference axis to mass element
Mass moment of Inertia of a rotating pendulum =
In this question, the distance from the reference axis to the mass element, r = L. Substituting this to the above equation gives:
Moments = Perpendicular Force
In this question, the pivot is point O.
Total moments about O = Moments of mass, m + Moments of spring element + Moments of the damper
Free body diagram of the system:
Moments of mass, m:
The force mg can be resolved to two components,
The force causing the moments will be
Moments =
Moments of the spring element:
Using the Hooke’s Law, a linear force-deflection model can be written,
Where f = restoring force
x = compression or extension distance
k = Spring constant or stiffness
Here the extension distance,
Hence the moments due to spring element =
Moments of the Damper:
The linear model for the force applied by the damper is:
Where f = damping force
v = relative velocity
c = damping coefficient
Here the force,
The distance between the pivot, O and the force applied =
Hence Moments of the damper =
Taking clockwise to be positive and substitute the above expressions to the following equation,
Total moments about O = Moments of mass, m + Moments of spring element + Moments of the damper
Total moments =
Derivation of Equation of Motion:
Substitute
Assuming
The differentiation of a constant is 0, hence the moment due to the force applied by the damper becomes 0.
Simplifying the equation further:
The equation of motion of the system is
When
When
Want to see more full solutions like this?
Chapter 4 Solutions
System Dynamics
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY