PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.54E
Interpretation Introduction
Interpretation:
The expression of the Gibbs-Helmholtz equation is to be verified using a basic form of the Gibbs-Helmholtz equation. The importance of chain rule of derivatives in the derivation of the Gibbs-Helmholtz equation is to be stated.
Concept introduction:
The chain rule of partial derivatives follows a certain set of steps. The equation which is used in the chain rule is given below.
In the above equation,
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Use the data and formula below to test the validity of the equation (7) for the two binary systems studied.
Write out the total derivative equation for "P" as a function of "T" and “V”.
For the function:
R, a, b - are constant- Write an expression for the derivative of p in relation to v when the other quantities are constant- Write an expression for the derivative of p in relation to T when all other quantities are constant.
Chapter 4 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 4 - List the sets of conditions that allow dS, dU, and...Ch. 4 - Explain why conditions for using S>0 as a strict...Ch. 4 - Explain how the equation dU+pdVTdS0 is consistent...Ch. 4 - Explain why the spontaneity conditions given in...Ch. 4 - Prove that the adiabatic free expansion of an...Ch. 4 - Derive equation 4.6 from equation 4.5.Ch. 4 - Derive equation 4.8 from equation 4.7.Ch. 4 - The third part of equation 4.9 mentions a...Ch. 4 - Calculate A for a process in which 0.160mole of an...Ch. 4 - What is the maximum amount of non-pV work that can...
Ch. 4 - Consider a piston whose compression ratio is 10:1;...Ch. 4 - When one dives, water pressure increases by 1atm...Ch. 4 - Calculate G(25C) for this chemical reaction, which...Ch. 4 - Thermodynamic properties can also be determined...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - For the reaction C(graphite)C(diamond) at 25C,...Ch. 4 - Determine G for the following reaction at 0C and...Ch. 4 - What is the maximum amount of electrical that is,...Ch. 4 - When a person performs work, it is non-pV work....Ch. 4 - Can non-pV work be obtained from a process for...Ch. 4 - Can pV work be obtained from a process for which...Ch. 4 - Batteries are chemical systems that can be used to...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - Under what conditions is A=0 for a phase change?...Ch. 4 - Example 4.2 calculated A for one step of a Carnot...Ch. 4 - Can CV and Cp be easily defined using the natural...Ch. 4 - Analogous to equation 4.26, what is the expression...Ch. 4 - Prob. 4.30ECh. 4 - Prob. 4.31ECh. 4 - Prob. 4.32ECh. 4 - Although ideally, U=H=0 for a gas-phase process at...Ch. 4 - Use equations 4.21 and 4.25 to explain why H and G...Ch. 4 - Prob. 4.35ECh. 4 - Which of the following functions are exact...Ch. 4 - Prob. 4.37ECh. 4 - Prob. 4.38ECh. 4 - Prob. 4.39ECh. 4 - Equation 4.19 says that (UV)S=p If we are...Ch. 4 - For an isentropic process, what is the approximate...Ch. 4 - Use the ideal gas law to demonstrate the cyclic...Ch. 4 - Prob. 4.43ECh. 4 - Prob. 4.44ECh. 4 - Evaluate (U/V)T for an ideal gas. Use the...Ch. 4 - Evaluate (U/V)T for a van der Waals gas. Use the...Ch. 4 - Repeat the previous exercise for a gas that...Ch. 4 - Determine an expression for (p/S)T for an ideal...Ch. 4 - Determine the value of the derivative {[(G)]/T}p...Ch. 4 - Prob. 4.50ECh. 4 - Prob. 4.51ECh. 4 - A 0.988-mole sample of argon expands from 25.0L to...Ch. 4 - A 3.66-mol sample of He contracts from 15.5L to...Ch. 4 - Prob. 4.54ECh. 4 - Prob. 4.55ECh. 4 - Use the Gibbs-Helmholtz equation to demonstrate...Ch. 4 - For the equation 2H2(g)+O2(g)2H2O(g)...Ch. 4 - Use equation 4.46 as an example and find an...Ch. 4 - What is the value of G when 1.00mol of water at...Ch. 4 - Prob. 4.60ECh. 4 - Prob. 4.61ECh. 4 - Prob. 4.62ECh. 4 - Prob. 4.63ECh. 4 - Prob. 4.64ECh. 4 - What is the change in the chemical potential of a...Ch. 4 - Prob. 4.66ECh. 4 - Prob. 4.67ECh. 4 - Prob. 4.68ECh. 4 - Prob. 4.69ECh. 4 - Can equation 4.62 be used to calculate for an...Ch. 4 - Prob. 4.71ECh. 4 - Of helium and oxygen gases, which one do you...Ch. 4 - Prob. 4.73ECh. 4 - Use equation 4.39 to determine a numerical value...Ch. 4 - Prob. 4.75ECh. 4 - Prob. 4.76E
Knowledge Booster
Similar questions
- Using the fact that =1/kT, show that equations 17.29 and 17.30 are equivalent.arrow_forwardCan CV and Cp be easily defined using the natural variable expressions for dU and dH? Why or why not?arrow_forwardWhich of the following functions are exact differentials? a dF=1xdx+1ydy b dF=1ydx+1xdy c dF=2x2y2dx+3x3y3dy d dF=2x2y3dx+2x3y2dy e dF=xndx+yndy,n= any integer f dF=(x3cosy)dx+(x3siny)dyarrow_forward
- solve the question provided in the image.arrow_forwardWe discussed in class (several times) how the Boltzmann distribution can be used to relate the relative populations of two states differing in energy by AU. Suppose you are given a vial containing a solution of glucose in water (don't ask why this would happen). For the purpose of this question, glucose exists in one of two conformations-"chair" or "boat"-with an energy difference (AU) of 25.11 kJ mol1 between them. 1. What would be the proportion of molecules in the "boat" conformation at 310K? 2. Thinking back to our discussion of the individual sources of energy that go into the potential energy calculation for a molecule (e.g. Upond Uangle, Uelectrostatic. etc), give a plausible explanation of why the "boat" conformation is less stable. H он "Chair" OH "Вoat" но но но- HO. H. HO. HO H. HO. OHarrow_forward1. What is the theorem of "equipartition of energy" in classical statistical mechanics? Based on this theorem, derive the internal energies for monatomic, diatomic and triatomic (both linear and nonlinear) ideal gases.arrow_forward
- Explain how Matthiessen’s rule is convenient in analyzing the experimental data of potassium below 20 K.arrow_forwardThe internal energy of a system A None of these В is the sum of the rotational, vibrational, and translational energies of all of its components refers only to the energies of the nuclei of the atoms of the component molecules D is the sum of the kinetic energy of all of its components E) is the sum of the potential and kinetic energies of the componentsarrow_forward112. Main assumption(s) involved in the derivation of Debye-Hückel equation is(are) the validity of (a) Only Poission equation (b) Poission equation and Boltzmann distribution (c) Poission equation, Boltzmann distribution and |±Zep|>>kÂT (d) Poission equation Boltzmann distribution and |±Zep|<arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,