
(a)
Interpretation:
The equation for Gibbs energy of mixing of gases is to be derived.
Concept introduction:
The term entropy is used to represent the randomness in a system. When a system moves from an ordered arrangement to a less ordered arrangement, then the entropy of the system increases. The entropy of mixing of gases is shown below.

Answer to Problem 4.62E
The equation for Gibbs energy of mixing of gases has been derived as shown below.
Explanation of Solution
The Gibbs free energy of mixing of gases is shown below.
Where,
•
•
•
•
The entropy of mixing of gases is shown below.
The change in Gibbs energy of the system is mathematically shown below.
Where,
•
•
•
•
The equation (3) can be written for the mixing process as shown below.
Assume that
Substitute the value of
Substitute the value of
Therefore, the equation for Gibbs energy of mixing of gases has been derived.
The equation for Gibbs energy of mixing of gases has been derived.
(b)
Interpretation:
The statement that the process of mixing of gases is always spontaneous is to be verified by a demonstration that the Gibbs free energy of mixing is always less than zero for a mixture of gases.
Concept introduction:
The Gibbs free energy of the system represents the maximum amount of non-expansion work achieved by a

Answer to Problem 4.62E
The mole fraction of gas is always less than one. The natural logarithm of a number that is less than one is always negative. Therefore, the value of change in Gibbs free energy for mixing of gas is always negative and the process is always spontaneous.
Explanation of Solution
The Gibbs free energy of mixing of gases is shown below.
Where,
•
•
•
•
The Gibbs free energy of mixing of two gases A and B can be given as shown below.
The mole fraction of both the gases is always less than one. The natural logarithm of a number that is less than one is always negative. The result of the addition of two negative values is also negative.
The right-hand side of the equation is negative for the mixing of gases.
Therefore, the negative value of change in Gibbs free energy indicates that the process of mixing of gases is spontaneous.
The mole fraction of gas is always less than one. The natural logarithm of a number that is less than one is always negative. Therefore, the value of change in Gibbs free energy for mixing of gas is always negative and the process is always spontaneous.
(c)
Interpretation:
The value of
Concept introduction:
The Gibbs free energy of the system represents the maximum amount of non-expansion work achieved by a thermodynamic system at isothermal and isobaric conditions. The change in Gibbs free energy is used to predict the spontaneity of the process. The Gibbs free energy of mixing of gases is shown below.

Answer to Problem 4.62E
The value of
Explanation of Solution
The number of moles of neon gas is
The number of moles of helium gas is
The number of moles of argon gas is
The temperature of mixing is
The temperature of mixing in Kelvin is shown below.
The total number of moles of gases is calculated as,
Where,
•
•
•
Substitute the value of
The mole fraction of a substance present in a system is shown below.
Where,
•
•
Substitute the value of the number of moles of neon gas and
Substitute the value of the number of moles of helium gas and
Substitute the value of the number of moles of argon gas and
The Gibbs free energy of mixing of gases is given as shown below.
Where,
•
•
•
•
Substitute the value of
Therefore, the value of
The value of
Want to see more full solutions like this?
Chapter 4 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- K Most Reactive Na (3 pts) Can the metal activity series (shown on the right) or a standard reduction potential table explain why potassium metal can be prepared from the reaction of molten KCI and Na metal but sodium metal is not prepared from the reaction of molten NaCl and K metal? Show how (not). Ca Mg Al с Zn Fe Sn Pb H Cu Ag Au Least Reactivearrow_forward(2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forwardDraw the Lewis structure for the polyatomic phosphite (PO¾³¯) a anion. Be sure to include all resonance structures that satisfy the octet rule. C I A [ ]¯arrow_forward
- Decide whether these proposed Lewis structures are reasonable. proposed Lewis structure Is the proposed Lewis structure reasonable? Yes. :0: Cl C C1: 0=0: : 0 : : 0 : H C N No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* Yes. ☐ No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | * If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0".arrow_forwardDraw the Lewis structure for the polyatomic trisulfide anion. Be sure to include all resonance structures that satisfy the octet rule. с [ ] - Garrow_forward1. Calculate the accurate monoisotopic mass (using all 1H, 12C, 14N, 160 and 35CI) for your product using the table in your lab manual. Don't include the Cl, since you should only have [M+H]*. Compare this to the value you see on the LC-MS printout. How much different are they? 2. There are four isotopic peaks for the [M+H]* ion at m/z 240, 241, 242 and 243. For one point of extra credit, explain what each of these is and why they are present. 3. There is a fragment ion at m/z 184. For one point of extra credit, identify this fragment and confirm by calculating the accurate monoisotopic mass. 4. The UV spectrum is also at the bottom of your printout. For one point of extra credit, look up the UV spectrum of bupropion on Google Images and compare to your spectrum. Do they match? Cite your source. 5. For most of you, there will be a second chromatographic peak whose m/z is 74 (to a round number). For one point of extra credit, see if you can identify this molecule as well and confirm by…arrow_forward
- Please draw, not just describe!arrow_forwardcan you draw each step on a piece of a paper please this is very confusing to mearrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? esc ? A O O •If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. olo 18 Ar Explanation Check BB Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accessibilityarrow_forward
- Name the structurearrow_forward> For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forwardHow to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





