FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
9th Edition
ISBN: 9781119840602
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.53P
To determine
The mass flow rate of the cooling water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water enters a uniformly heated vertical tube of diameter 2.5 cm and length 4.5 m. Total heat applied to the tube is 650 kW. Inlet pressure, temperature, and mass flow rate of water are given as 100 bar, 285 C, and 1.5 kg/s, respectively. Find the pre-heating length, exit quality, and various pressure differentials terms.
thermodynamics
Exhaust steam from an engine passes into a condenser at a pressure of 0.12 bar and
dryness 0.88. The temperature of the condensate from the condenser is 40°C. The
circulating water enters the condenser at 12°C and leaves at 29°C. Calculate the mass of
circulating water per kg steam condensed.
Steam Properties:
Steam at 0.12 bar (0.012 MPa)
hf = 207 kJ/kg
hfg = 2383 kJ/kg
Water Properties
Water at 40°C
Water at 29°C
Water at 12°C
h = 167.5 kJ/kg
h = 121.5 kJ/kg
h = 50.4 kJ/kg
A. 26.71 kg
B. 28.05 kg
C. 30.04 kg
D. 32.86 kg
Chapter 4 Solutions
FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A heat exchanger is used to heat 36 kg/hr of air originally at standard conditions (25 °C and 1 atm) to 125 °C using steam originally at 10 bar and 300 °C. Assume both streams maintain constant pressure and air to be an ideal gas with constant cp = 1.005 kJ/kg·K. No heat is lostto the surroundings. Calculate: The minimum flow rate of the steam in kg/hr?arrow_forwardQuestion 15 Steam at a pressure of 0.08 bar and a quality of 93.2 % enters a shell-and-tube heat exchanger where it condenses on the outside of tubes through which cooling water flows, exiting as saturated liquid at 0.08 bar. The mass flow rate of the condensing steam is 2.4 x 105 kg/h. Cooling water enters the tubes at 15°C and exits at 35°C with negligible change in pressure. Neglecting stray heat transfer and ignoring kinetic and potential energy effects, determine the mass flow rate of the cooling water, in kg/h, for steady-state operation. m water x 106 kg/harrow_forwardRefrigerant (known as R-134a) enters a heat exchanger at 100 kPa. The refrigerant is of 20% quality upon entering. It exits the heat exchanger as a saturated vapor also at 100kPa. An unknown liquid (specific heat capacity of 3.9 kJ/Kg.K) enters the heat exchanger at a rate of 1.1 kg/sec at 320.15 Kelvin. This unknown liquid exits at 278.15 degrees kelvin. Find: The mass flow rate or the refrigerant [kg/sec]Q (the rate of heat transfer)arrow_forward
- Thermodynamicsarrow_forwardWith regard to the flash vessel, consider 10 bar steam (hg=2,782 kJ/kg) entering a turbine and leaving as condensate (i.e. a saturated liquid) also at 10bar (hf=782 kJ/kg). If the mass flow rate of the above condensate were 10 kg/s and it entered a flash vessel at 1.5 bar how much saturated steam (hg=2,717 kJ/kg) and saturated liquid (hf= 536 kJ/kg) could it produce?arrow_forwardI need help with parts 1 through 3 for this problem.arrow_forward
- Consider a reactor (combustor) in which fuel (CO) and oxidizer (H₂O) flow steadily. Both streams are separate and at standard conditions. The products CO₂ and H₂, a gaseous mixture, leaves at 500 K and 100 kPa. Both CO and H20 at inlet are in gaseous phase. The mass flow rate of CO is 2.8 kg/sec. The magnitude of heat transfer is (in MJ/sec) O 5.7 O 4.7 O 3.7 O 2.7 O 1.7arrow_forwardA heat exchanger is used to heat 36 kg/hr of air originally at standard conditions (25 °C and 1 atm) to 125 °C using steam originally at 10 bar and 300 °C. Assume both streams maintain constant pressure and air to be an ideal gas with constant cp = 1.005 kJ/kg·K. No heat is lostto the surroundings. Find The minimum flow rate of the steam in kg/hr?arrow_forwardAmmonia and air pass through the heat exchanger. While the ammonia is entering as a superheated vapor at 16 bar pressure and 60C temperature it is leaving as a saturated liquid at the same pressure but unknown temperature. The ammonia mass flow rate is 400 kg/hour. Air is flowing backward and is heated from 17C to 42C at the constant pressure of 2 bars. NOTE: Find air properties from https://www.peacesoftware.de/einigewerte/luft_e.html a.Draw the sketch of the heat exchanger showing all thermodynamic parameters (P, T, etc.) Please show all steps of solutionarrow_forward
- A stream of methane(CH4, Cp=4R) flowing at 3.0 kmol/min is isobarically heated in a well‑insulated heat exchanger from 30.00 ∘C to 1.50×102 ∘C. The second side of the exchanger is fed with saturated water vapor, which is isobarically cooled to a saturated liquid when it leaves. As unit operator, you have the choice of feeding high‑pressure steam (HPS) at 4.00 MPa or medium pressure steam (MPS) at 1.00 MPa. Assume Tsurr=27 ∘C. Find the mass flow rate of water and lost work if high pressure steam (HPS) is used. Find the mass flow rate of water and lost work if medium pressure steam (MPS) is used. Which is the better choice of steam to use?arrow_forwardPlease useBook: Introduction to Chemical Engineering Thermodynamics 8 edition, 2018 (Smith, J.M., Van Ness, H.C., Abbot, M.M., Swihart.)arrow_forwardA company will carry out a reaction process consisting of an exothermic reactor measuring 5 m operating at a pressure of 10 bar and 200°C and a STHE having a heat exchange area of 200 m². Detailed equipment information is shown in the following table Peralatan Reaktor STHE Ukuran Volume Material = 5 SS Area = 200 m² CS Tekanan 10 bar 10 bar Suhu 200°C 200°C Determine the Total Capital Cost of the equipment to be installed in 2023! Determine the Total Annual Cost if the project runs for 3 years and the operating costs are $0.5/hour!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY