FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
9th Edition
ISBN: 9781119840602
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.22P
i.
To determine
- Inlet area
ii.
To determine
b. Heat transfer between nozzle and surrounding.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
O air enters a pipe at 25 °C, 100 kPa with a volumetric flow rate of 23 m/h. On
the outer pipe surface is an electrical resistor covered with insulation. With a
voltage of 120 V, the resistor draws a current of 4 amps. Assuming the ideal
gas model with c, = 1.005 kJ/kg - K for air and ignoring kinetic and potential
energy effects, determine
i. the mass flow rate of the air, in kg/h
ii.
the temperature of the air at the exit, in °C
Refrigerant 134a enters a well-insulated nozzle at 200 lbf/in, 170F, with a velocity of 120 fts and exits at 50 ibt/in with a
velocity of 1500 ft/s.
For steady-state operation, and neglecting potential energy effects, determine the temperature, in "F and the quality of the
refrigerant at the exit.
T:-
295
"F
07.3
Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80oF with a velocity of 1200 ft/s. The inlet area is 1.4 in2. At the exit, the pressure is 400 lbf/in2 and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in lb/s, and the exit temperature, in oF.
Chapter 4 Solutions
FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant 134a enters an insulated diffuser as a saturated vapor at 60oF with a velocity of 1000 ft/s. The inlet area is 1.4 in2. At the exit, the pressure is 400 lbf/in2 and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected.Determine the mass flow rate, in lb/s, and the exit temperature, in oF.arrow_forwardArgon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s, respectively. At the exit, the temperature is 480°R and the pressure is 40 lb/in?. The area of the exit is 0.0085 ft². Use the ideal gas model with k-1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s. Step 1 Your answer is correct Determine the velocity at the exit, in ft/s. V₂- 677.088 Hint Step 2 ft/s Determine the mass flow rate, in lb/s, through the nozzle. m = i lb/s Attempts: 2 of 4 usedarrow_forwardAir with a mass flow rate of 3 kg/s enters a horizontal nozzle operating at steady state at 400 K, 300 kPa, and velocity of 2.5 m/s. At the exit, the temperature is 250 K and the velocity is 400 m/s. Using the ideal gas model for air with constant cp = 1.011 kJ/kg · K, determine a. the area at the inlet, in m2. b. the heat transfer between the nozzle at its surroundings, in kW. Specify whether the heat transfer is to or from the air.arrow_forward
- Refrigerant 134a enters an insulated diffuser as a saturated vapor at 120°F with a velocity of 1200 ft/s. The inlet area is 1.4 in?. At the exit, the pressure is 400 Ibf/in? and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in Ib/s, and the exit temperature, in °F.arrow_forwardPLS ANSWER ALL I WILL GIVE THUMBS UParrow_forwardRefrigerant 134a enters an insulated diffuser as a saturated vapor at 60°F with a velocity of 1200 ft/s. The inlet area is 1.4 in?. At the exit, the pressure is 400 lby/in? and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in Ib/s, and the exit temperature, in °F. Step 1 Determine the mass flow rate, in Ib/s. i Ib/s.arrow_forward
- Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80°F with a velocity of 1400 ft/s. The inlet area is 1.4 in². At the exit, the pressure is 400 lb/in² and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be eglected. Determine the mass flow rate, in lb/s, and the exit temperature, in °F. Step 1 Your answer is correct. Determine the mass flow rate, in lb/s. m = 28.887 Hint Step 2 lb/s. Determine the exit temperature, in °F. T₂ = i OF Attempts: 1 of 4 usedarrow_forwardsolve the following problem: Steam enters a turbine operating at steady state at 850oF and 450 lbf/in2 and leaves as a saturated vapor at 1.4 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.arrow_forwardT-4arrow_forward
- A steam turbine operates with an inlet condition of 30 bar, 400 0C, 160 m/s and an outlet state of a saturated vapour at 0.7 bar with a velocity of 100 m/s. The mass flow rate is 1200 kg/min and the power output is 10800 kW. present process is on T-V diagram. Determine the magnitude and direction of the heat transfer rate in kJ/min if the potential energy change is negligible.arrow_forwardRefrigerant 134a enters an insulated diffuser as a saturated vapor at 80°F with a velocity of 1400 ft/s. The inlet area is 1.4 in?. At the exit, the pressure is 400 lb;/in? and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in Ib/s, and the exit temperature, in °F.arrow_forwardpls answer the given thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license