FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
9th Edition
ISBN: 9781119840602
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.78P
To determine
The amount of mass entered into the tank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
simple solution
Either solve all parts or leave it unsolved ... I vll upvote
A piston-cylinder assembly contains nitrogen gas with a mass of my = 0.2 kg. At the initial state (state 1), the
pressure and temperature of the nitrogen are P, = 100 kPa and T, = 100 "C, respectively. The nitrogen is
compressed in a polytropic process with an exponent n = 1.4. At the final state (state 2), the pressure of the nitrogen
gas is P; = 500 kPa. A copper plate inside the cylinder is in thermal equilibrium with the nitrogen gas at both the
initial and the final states of the process. The mass of the copper plate is me =0.1 kg. The nitrogen can be treated as
an ideal gas.
(a) Determine the initial and final volume of the nitrogen gas (i.e., V, and V;).
(b) Determine the final temperature of the nitrogen gas (i.e., T;).
(c) Determine the total work of the process (i.e., ¡W:).
Chapter 4 Solutions
FUND OF ENG THERMODYN(LLF)+WP NEXT GEN
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One-quarter Ibmol of oxygen gas (O₂) undergoes a process from p₁ = 20 lbf/in², T₁ = 500°R to p2 = 150 lbf/in². For the process W = -500 Btu and Q = -177.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forwardOne-quarter Ibmol of oxygen gas (O2) undergoes a process from p1 = 20 lbf/in?, T1 = 500°R to p2 = 150 lbf/in?. For the process W = -500 Btu and Q = -152.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forwardA spring-loaded piston-cylinder device contains of m=1kg carbon dioxide. Initially, the spring has no force on the piston and P₁ = 500kPa, T₁ = 150K, V₁ = 0.1m³. Heat is transferred to the gas, causing the piston to rise and to compress the spring. At the state 2, T₁₂=900K, V₂=0.3m³. The gas is an ideal gas. (11) Calculate the heat transferred into the system in P1, V1, T1 P2, V2, T2 in kJ?arrow_forward
- Air occupies a 0.5-m' tank. It starts at a pressure of 5 bar and a temperature of 300 K. Energy flows into the tank via heat transfer until the temperature reaches 400 K. This happens at constant pressure, which is possible because there is a pressure-relief valve that lets air leave the tank to keep the pressure constant. Neglect kinetic and potential energy effects, and use the ideal gas model with constant specific heats evaluated at 350 K. 4. Determine the mass of air that escapes, in kg. Determine the amount of energy transfer by heat, in kJ. a. b. Hint: use Ucv = mu; he u+ RT, and cv+ R= Cp.arrow_forward3. Do specific volume and specific internal energy fix the state of a simple compressible system? If so, how can you use the steam tables to find the state for H20?arrow_forwardA balloon filled with helium, initially at 27oC, 1 bar, is released and rises in the atmosphere until the helium is at 17oC, 0.9 bar. Determine, as a percent, the change in volume of the helium from its initial volume. Assume ideal gas.arrow_forward
- One-quarter Ibmol of oxygen gas (O2) undergoes a process from P1 = 20 lbf/in?, T1 = 500°R to p2 = 150 lbę/in2. For the process W = -500 Btu and Q = -177.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forwardA balloon filled with 0.4 grams of helium, initially at 27°C, 1.3 bar, is released and rises in the atmosphere until the helium is at 17°C, 0.90 bar. Assume the helium behaves as an ideal gas. Determine the initial and final volumes, in cm³.arrow_forward3.123 Air is confined to one side of a rigid container divided by a partition, as shown in Fig. P3.123. The other side is in tially evacuated. The air is initially at p 5 bar, T= s0K and V, 0.2 m. When the partition is removed, the ai expands to fill the entire chamber. Measurements show tha V 2 V and p2= p/4. Assuming the air behaves as an ideal gas, determine (a) the final temperature, in K, and (b) the heat transfer, kJ. Remo vable partition OLZ AO S bar S0O K Initially- V2-2v, P2-r Finally:arrow_forward
- 5. A copper calorimeter can with mass 0.446 kg contains 0.0950 kg of ice. The system is initially at 0.0 C. (a) If 0.0350 kg of steam at 100.09C and 1.00 atm pressure is added to the can, what is the final temperature of the calorimeter can and its contents? (b) At the final temperature, how many kilograms are there of ice, how many of liquid water, and how many of steam? 6. The operating temperature of a tungsten filament in an incandescent light bulb is 2450 K, and its emissivity is 0.350. Find the surface area of the filament of a 150-W bulb if all the electrical energy consumed by the bulb is radiated by the filament as electromagnetic waves. (Only a fraction of the radiation appears as visible light.)arrow_forwardAn Isobaric process is done on steam where it is heated to 200 C at 1.1 MPa. It was initially a kilogram of saturated liquid. Find the change in volume, change in internal energy, change in enthalpy, and change in entropy. (0.1848 m3, 1837.31 kJ, 2040.66 kJ, 4.4609 kJ/k) Table 3. Vapor p(t Sat.) 1.10 (184.09) 1.15 (186.07) 10 10 . Sat. 177.53 2586.4 2781.7 6.5535 170.13 2587.7 27833 6.5381 175 180 185 190 195 172.50 2567.9 2737.6 L75.28 25782 2771.0 178.02 2588.2 2784.0 180.71 2598.1 2796.9 183.36 2607.8 2809.5 6.6137 164.20 25648 2753.6 166.91 2573.2 2767.2 169 37 258SS 2780.5 172.18 2595.5 2793.5 174.75 2605.4 2806.4 6.4726 6.3028 63320 6.5603 6.5878 6.5004 63300 6.5587 6.5866 200 205 210 215 220 185.97 2617.4 2822.0 6.6401 188.56 2626.8 2834.2 6.6659 191.11 2636.1 2846.3 6.6911 193.63 2645.3 2858.3 6.7157 196.13 2654.3 2870.1 6.7398 177.28 2615.1 2819.0 179.77 2624.6 2831.4 182.24 2634.0 2843.6 184.68 2643.3 2855.7 187.09 2652.5 2867.6 6.7154 6.6146 6.6407 6.6661 6.6910 225 230 235…arrow_forward3.123 Air is confined to one side of a rigid container divided by a partition, as shown in Fig. P3.123. The other side is in tially evacuated. The air is initially at p 5 bar, T,= s0K and V 0.2 m. When the partition is removed, the air expands to fill the entire chamber. Measurements show he V 2 V and p2=Pi/4. Assuming the air behaves as a ideal gas, determine (a) the final temperature, in K, and (b) the heat transfer, kJ. Remo vable partition =02 m² S bar 00 K Initially: Vacuu m Va- 2v, P2 PA Finallyy=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License