POWER SYS. ANALYSIS+DESIGN
6th Edition
ISBN: 9780357700907
Author: Glover
Publisher: INTER CENG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.44P
Consider the line of Problem 4.25. Calculate the capacitive reactance per phase in
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Find Eigenvalues and Eigenvectors for the following matrices:
[5 -6 1
A = 1
1
0
3
0
1
Use Gauss-Jordan Elimination method to solve the following system:
4x1+5x2 + x3 = 2
x1-2x2-3x3 = 7
3x1 x2 2x3 = 1.
-
3. As the audio frequency of Fig. 11-7 goes down, what components of Fig.
12-4 must be modified for normal operation?
OD
C₂ 100
HF
R₁ 300
Re 300
ww
100A
R
8
Voc
Rz
10k
reset
output 3
R7
8
Voc
3
reset
output
Z
discharge
VR₁
5k
2
trigger
2 trigger
7
discharge
R 3
1k
5
control
voltage
threshold 6
5 control
voltage
6
threshold
GND
Rs
2k
C.
C.
100
GND
Uz LM555 1
Ce
0.01
U, LM555
0.01
8.01.4
PRO
Fig. 11-7
Audio lutput
Pulse width modulator
R4 1k
ww
C7
Re 1k
ww
R7 100
VR
50k
10μ
Ra
R10
C₁.
R1
3.9k
3.9k
0.14 100k
TO
w
Rs 51
82
3
H
10
Carrier
U₁
Ca
Input
A741
2.2
Us
MC1496
PWM signal
input
R2
0.1100k
Uz
A741
41
Cs
1
Re
10k
VR2
50k
VR3
100k
14
12
C3.
3% +
Ce
0.1
10μ
5
1A
HH
C
+12V
0.1
O PWM
Output
C
0.02-
R
100k +12 V
Demodulated
output
6
Ca
0.33
w
R
10k
R12
100k
ww 31
о
+
4A741
-12 V
Fig. 12-4 PWM demodulator
C
1500p
Chapter 4 Solutions
POWER SYS. ANALYSIS+DESIGN
Ch. 4 - ACSR stands for Aluminum-clad steel conductor...Ch. 4 - Overhead transmission-line conductors are bare...Ch. 4 - Alumoweld is an aluminum-clad steel conductor....Ch. 4 - EHV lines often have more than one conductor per...Ch. 4 - Shield wires located above the phase conductors...Ch. 4 - Conductor spacings, types, and sizes do have an...Ch. 4 - A circle with diameter Din.=1000Dmil=dmil has an...Ch. 4 - An ac resistance is higher than a dc resistance....Ch. 4 - Prob. 4.9MCQCh. 4 - Transmission line conductance is usually neglected...
Ch. 4 - Prob. 4.11MCQCh. 4 - Prob. 4.12MCQCh. 4 - For a single-phase, two-wire line consisting of...Ch. 4 - For a three-phase three-wire line consisting of...Ch. 4 - For a balanced three-phase positive-sequence...Ch. 4 - A stranded conductor is an example of a composite...Ch. 4 - lnAk=lnAk True FalseCh. 4 - Prob. 4.18MCQCh. 4 - Expand 6k=13m=12Dkm.Ch. 4 - Prob. 4.20MCQCh. 4 - For a single-phase two-conductor line with...Ch. 4 - In a three-phase line, in order to avoid unequal...Ch. 4 - For a completely transposed three-phase line...Ch. 4 - Prob. 4.24MCQCh. 4 - Does bundling reduce the series reactance of the...Ch. 4 - Does r=e14r=0.788r, which comes in calculation of...Ch. 4 - In terms of line-to-line capacitance, the...Ch. 4 - For either single-phase two-wire line or balanced...Ch. 4 - Prob. 4.29MCQCh. 4 - Prob. 4.30MCQCh. 4 - Prob. 4.31MCQCh. 4 - Prob. 4.32MCQCh. 4 - Prob. 4.33MCQCh. 4 - Prob. 4.34MCQCh. 4 - The affect of the earth plane is to slightly...Ch. 4 - When the electric field strength at a conductor...Ch. 4 - Prob. 4.37MCQCh. 4 - Prob. 4.38MCQCh. 4 - Considering two parallel three-phase circuits that...Ch. 4 - The Aluminum Electrical Conductor Handbook lists a...Ch. 4 - The temperature dependence of resistance is also...Ch. 4 - A transmission-line cable with a length of 2 km...Ch. 4 - One thousand circular mils or 1 kcmil is sometimes...Ch. 4 - A 60-Hz, 765-kV, three-phase overhead transmission...Ch. 4 - A three-phase overhead transmission line is...Ch. 4 - If the per-phase line loss in a 70-km-long...Ch. 4 - A 60-Hz, single-phase two-wire overhead line has...Ch. 4 - Prob. 4.9PCh. 4 - A 60-Hz, three-phase three-wire overhead line has...Ch. 4 - Prob. 4.11PCh. 4 - Find the inductive reactance per mile of a...Ch. 4 - A single-phase overhead transmission line consists...Ch. 4 - Prob. 4.14PCh. 4 - Find the GMR of a stranded conductor consisting of...Ch. 4 - Prob. 4.16PCh. 4 - Determine the GMR of each of the unconventional...Ch. 4 - A 230-kV, 60-Hz, three-phase completely transposed...Ch. 4 - Prob. 4.19PCh. 4 - Calculate the inductive reactance in /km of a...Ch. 4 - Rework Problem 4.20 if the bundled line has (a)...Ch. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - For the overhead line of configuration shown in...Ch. 4 - Prob. 4.26PCh. 4 - Figure 4.34 shows double-circuit conductors'...Ch. 4 - For the case of double-circuit, bundle-conductor...Ch. 4 - Prob. 4.29PCh. 4 - Figure 4.37 shows the conductor configuration of a...Ch. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.38PCh. 4 - Calculate the capacitance-to-neutral in F/m and...Ch. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Three ACSR Drake conductors are used for a...Ch. 4 - Consider the line of Problem 4.25. Calculate the...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - The capacitance of a single-circuit, three-phase...Ch. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Approximately how many physical transmission...Ch. 4 - Prob. BCSQCh. 4 - Prob. CCSQCh. 4 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- DUC 1. In Fig. 12-4, what are the functions of the VR1 and VR2? 2. In Fig. 12-4, what is the function of the VR3? VR₁ 50k C₁ R1 0.1 100k Carrier Input U₁ A741 PWM signal input R41k www Re 1k w C7 ± 10μT R7 100 ww =L H C4 2.2 H W82 Rs 51 3 10 U3 MC1496 C2 R2 U2 A741 22 0.1 100k VR2 50k VR3 100kr 14 C3 10μ 1k 0.1 4 5 6 12 m Re 10k R9 R102 3.9k 3.9k HHI C10 0.1 -0 +12V C11 R 0.02 100k +12 V Demodulated output C R11 R12 A741 0.33 10k 100k -12 V Ca 1μ C12 1500p PRODUC Fig. 12-4 PWM demodulator PRODUCTSarrow_forward10.37 Use mesh analysis to find currents I₁, I2, and I3 in the circuit of Fig. 10.82. ML 120-90° V 120 -30° V Figure 10.82 For Prob. 10.37. N N Z=80-135arrow_forward3. Find the phasor current I。 in the circuit shown below. Be aware of the direction markings. (15 pts) 1052 I 5057 ①520 Amps 2012 j5052arrow_forward
- 10.93 Figure 10.135 shows a Colpitts oscillator. Show that the ed oscillation frequency is 1 fo= 2π √√LCT where CTC₁C2/(C₁ + C₂). Assume R; >>> R₁ + Rf ww Vo L m C₂ C₁ 5 Xci Figure 10.135 A Colpitts oscillator; for Prob. 10.93. (Hint: Set the imaginary part of the impedance in the feedback circuit equal to zero.)arrow_forwardDetermine (a) the average and (b) rms values of the periodiccurrent waveform shown in Fig. P8.3.arrow_forward10.68 Find the Thevenin equivalent at terminals a-b in the circuit of Fig. 10.111. ML 6 sin 10t V 492 Figure 10.111 For Prob. 10.68. 5913 + 410 + -2 F 20 1H Vo obarrow_forward
- 10.79 For the op amp circuit in Fig. 10.122, obtain Vo. 5 cos 10³t V(+ Figure 10.122 For Prob. 10.79. 10 ΚΩ www 20 ΚΩ www 0.1 µF 40 ΚΩ 0.2 μFarrow_forward10.19 Obtain V, in Fig. 10.68 using nodal analysis. # ML ΖΩ j20 m 12/0° V 492 (+ ww www ' < ་ + V -j4 0.2V Figure 10.68 For Prob. 10.19.arrow_forward10.47 Determine i, in the circuit of Fig. 10.92, using the superposition principle. ML 10 sin(t -30°) V 1Ω www Figure 10.92 For Prob. 10.47. 96 F 202 www 24 V +) 2 H m io 2 cos 3t www 42arrow_forward
- 10.53 Use the concept of source transformation to find V, in the circuit of Fig. 10.97. 492 www -j30 j40 m + 20/0° V(+ j20 ΖΩ www -120 V ° Figure 10.97 For Prob. 10.53.arrow_forward2. Given you have a real valued signal with the following single sided baseband signal spectrum: ↑ ❘m(f)| A f=0 500 750 Sketch the frequency domain of |X(f)| given: a. x1(t) =m(t)cos(2**5000*) b. x2(t)=m(t)cos(2**600) Frequency (Hz)arrow_forwardwhat is deference between full Adder and Half?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305632134/9781305632134_smallCoverImage.gif)
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
What is the Difference Between Single Phase and Three Phase???; Author: Electrician U;https://www.youtube.com/watch?v=FEydcr4wJw0;License: Standard Youtube License