The molarity of each ion is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol / L . The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows: Molarity = moles of solute ( mol ) volume of solution ( L ) (1) Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is kg/m 3 . The formula to calculate density is, Density = Mass Volume (2)
The molarity of each ion is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol / L . The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows: Molarity = moles of solute ( mol ) volume of solution ( L ) (1) Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is kg/m 3 . The formula to calculate density is, Density = Mass Volume (2)
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
Molarity=moles of solute(mol)volume of solution(L) (1)
Density is defined as mass per unit volume. Mass and volume are physical quantities and the units of mass and volume are fundamental units. Density is the ratio of mass to the volume. The unit of volume is derived from the units of mass and volume. The SI unit of density is kg/m3. The formula to calculate density is,
Density=MassVolume (2)
(b)
Interpretation Introduction
Interpretation:
The total molarity of alkali metal ions is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
Molarity=moles of solute(mol)volume of solution(L) (1)
Strong electrolytes are the substance that dissociates completely into its ions when dissolved in the solution and conducts a large amount of electricity.
(c)
Interpretation Introduction
Interpretation:
The total molarity of alkaline earth metal ions is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
Molarity=moles of solute(mol)volume of solution(L) (1)
Strong electrolytes are the substance that dissociates completely into its ions when dissolved in the solution and conducts a large amount of electricity.
(d)
Interpretation Introduction
The total molarity of anions is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
Molarity=moles of solute(mol)volume of solution(L) (1)
Strong electrolytes are the substance that dissociates completely into its ions when dissolved in the solution and conducts large amount of electricity.
(racemic)
19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol
into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon
atoms in the target molecule. Show all reagents and all molecules synthesized along
the way.
&
+ EtOH
H
2-Oxepanone
1-Cyclopentenecarbaldehyde
R₂
R₁
R₁
a
R
Rg
Nu
R₂
Rg
R₁
R
R₁₂
R3
R
R
Nu enolate forming
R₁ R
B-Alkylated carbonyl
species or amines
Cyclic B-Ketoester
R₁₁
HOB
R
R₁B
R
R₁₂
B-Hydroxy carbonyl
R
diester
R2 R3
R₁
RB
OR
R₂ 0
aB-Unsaturated carbonyl
NaOR
Aldol
HOR
reaction
1) LDA
2) R-X
3) H₂O/H₂O
ketone,
aldehyde
1) 2°-amine
2) acid chloride
3) H₂O'/H₂O
0
O
R₁
R₁
R
R₁
R₁₂
Alkylated a-carbon
R₁
H.C
R₁
H.C
Alkylated methyl ketone
acetoacetic
ester
B-Ketoester
ester
R₁
HO
R₂ R
B-Dicarbonyl
HO
Alkylated carboxylic acid
malonic ester
Write the reagents required to bring about each reaction next to the arrows shown.
Next, record any regiochemistry or stereochemistry considerations relevant to the
reaction. You should also record any key aspects of the mechanism, such as forma-
tion of an important intermediate, as a helpful reminder. You may want to keep
track of all reactions that make carbon-carbon bonds, because these help you build
large molecules from smaller fragments. This especially applies to the reactions in…
Provide the reasonable steps to achieve the following synthesis.