The number of moles of H + ions that are present in 1.4 mL of 0.75 M hydrobromic acid is to be calculated. Concept introduction: Acid is a substance that dissociates in water to release H + ions. Depending upon the strength the acids can be classified into two types: 1. Strong acids 2. Weak acids Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions. They behave as strong electrolytes and conduct a large amount of electricity. Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions. They behave as weak electrolytes and conduct less amount of electricity.
The number of moles of H + ions that are present in 1.4 mL of 0.75 M hydrobromic acid is to be calculated. Concept introduction: Acid is a substance that dissociates in water to release H + ions. Depending upon the strength the acids can be classified into two types: 1. Strong acids 2. Weak acids Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions. They behave as strong electrolytes and conduct a large amount of electricity. Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions. They behave as weak electrolytes and conduct less amount of electricity.
The number of moles of H+ ions that are present in 1.4 mL of 0.75M hydrobromic acid is to be calculated.
Concept introduction:
Acid is a substance that dissociates in water to release H+ ions. Depending upon the strength the acids can be classified into two types:
1. Strong acids
2. Weak acids
Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions. They behave as strong electrolytes and conduct a large amount of electricity.
Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions. They behave as weak electrolytes and conduct less amount of electricity.
(b)
Interpretation Introduction
Interpretation:
The moles of H+ ions that are present in 2.47mL of 1.98M hydriodic acid is to be calculated.
Concept introduction:
Acid is a substance that dissociates in water to release H+ ions. Depending upon the strength the acids can be classified into two types:
1. Strong acids
2. Weak acids
Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions. They behave as strong electrolytes and conduct a large amount of electricity.
Weak acids are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions. They behave as weak electrolytes and conduct less amount of electricity.
(c)
Interpretation Introduction
Interpretation:
The moles of H+ ions that are present in 395 mL of 0.270M nitric acid is to be calculated.
Concept introduction:
Acid is a substance that dissociates in water to release H+ ions. Depending upon the strength the acids can be classified into two types:
1. Strong acids
2. Weak acids
Strong acids are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions. They behave as strong electrolytes and conduct a large amount of electricity.
Weak acids are the substance that does not dissociates completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions. They behave as weak electrolytes and conduct less amount of electricity.
What impact would adding twice as much Na2CO3 than required for stoichiometric quantities have on the quantity of product produced? Initial results attached
Given that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield.
Results are attached form experiment
5) Calculate the flux of oxygen between the ocean and the atmosphere(2 pts), given that:
(from Box 5.1, pg. 88 of your text):
Temp = 18°C
Salinity = 35 ppt
Density = 1025 kg/m3
Oxygen concentration measured in bulk water = 263.84 mmol/m3
Wind speed = 7.4 m/s
Oxygen is observed to be about 10% initially supersaturated
What is flux if the temperature is 10°C ? (2 pts) (Hint: use the same density in your calculations). Why do your calculated values make sense (or not) based on what you know about the relationship between gas solubility and temperature (1 pt)?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.