The given redox reaction is to be balanced and whether it is a combination, decomposition, or displacement reaction is to be classified. Ca ( s ) + H 2 O ( l ) → Ca ( OH ) 2 ( a q ) + H 2 ( g ) Concept introduction: A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another. The redox reaction can be classified into three types depending upon the number of reactants and products as follows: 1. Combination redox reaction 2. Decomposition redox reaction 3. Displacement redox reactions
The given redox reaction is to be balanced and whether it is a combination, decomposition, or displacement reaction is to be classified. Ca ( s ) + H 2 O ( l ) → Ca ( OH ) 2 ( a q ) + H 2 ( g ) Concept introduction: A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another. The redox reaction can be classified into three types depending upon the number of reactants and products as follows: 1. Combination redox reaction 2. Decomposition redox reaction 3. Displacement redox reactions
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 4, Problem 4.103P
(a)
Interpretation Introduction
Interpretation:
The given redox reaction is to be balanced and whether it is a combination, decomposition, or displacement reaction is to be classified.
Ca(s)+H2O(l)→Ca(OH)2(aq)+H2(g)
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
(b)
Interpretation Introduction
Interpretation:
The given redox reaction is to be balanced and whether it is a combination, decomposition, or displacement reaction is to be classified.
NaNO3(s)→NaNO2(s)+O2(g)
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
1. Combination redox reaction
2. Decomposition redox reaction
3. Displacement redox reactions
(c)
Interpretation Introduction
Interpretation:
The given redox reaction is to be balanced and whether it is a combination, decomposition, or displacement reaction is to be classified.
C2H2(g)+H2(g)→C2H6(g)
Concept introduction:
A redox reaction is a type of reaction that involves the change in oxidation number of a molecule, atom or ion changes due to the transfer of an electron from one species to another.
The redox reaction can be classified into three types depending upon the number of reactants and products as follows:
Recent advancements in liquid chromatography include the development of ultrahigh pressure liquid
chromatography (UHPLC) and an increased use of capillary columns that had previously only been used
with gas chromatography. Both of these advances have made the development of portable LC systems
possible. For example, Axcend Corp. makes a portable system that uses a capillary column with an
internal diameter of 150-μm-that is packed with 1.7-um stationary phase particles. In contrast, a traditional
LC column has a 4.6 mm internal diameter and utilizes 5-um stationary phase particles.
a) Explain one advantage that is afforded by the use of a capillary column in liquid chromatographic
separation. Explain one disadvantage of capillary columns.
b) Explain how the use of smaller stationary phase particles can improve the resolution of a separation.
Include any relevant equations that support your explanation.
c) A scientist at Rowan University is using
the Axcend LC to conduct analyses of F…
This paper describes the use of fullerene molecules, also known as buckyballs, as a stationary phase for
liquid chromatography. The performance of the fullerene-modified stationary phase (FMS) is compared to
that of a more common C18 stationary phase and to two other carbon-based stationary phases, PGC and
COZ.
A.
10A
OM
B.
-
Figure 1. Idealized drawing of the
cross-section of a pore inside a silica
particle, showing the relative densities
of aminopropylsilyl (red/green) and
fullerene (blue) groups: (A) full cross-
section; (B) detailed view of covalent
bonding of fullerene to the silica
surface. Surface densities of silyl and
fullerene groups were inferred from
elemental composition results obtained
at each stage of the synthesis (see Table
1).
Absorbance (mAU, 220 nm)
700
600
500
400
300
200
100
a. Define selectivity, a, with words and an equation.
b. Explain how the choice of stationary phase affects selectivity.
c. Calculate the resolution of the nitrobenzene and toluene peaks in…
Normalized Intensity (a. u.)
0.5
1.0
A 3D-printed GC column (shown below) was created for use with "micro" gas chromatography
applications. To prove its utility, it was used to separate a mixture of alkanes (C9-C18, C22, C24). For the
separation shown below, the column temperature was ramped from 40 °C to 250 °C at a rate of 30 °C per
minute.
(a)
9 10
=
1 mm
12
13
15
22
0.0
0
100
200
300
400
Time (sec)
a) What detector would you use for this analysis? Justify your selection.
b) Explain how the chromatogram would change if the separation was run isothermally.
c) Explain how the chromatogram would change if the temperature ramp were increased to 50 °C per
minute.