Molarity of a solution prepared by diluting 37.00 mL of 0.250 M potassium chloride to 150.00 mL is to be calculated. Concept introduction: Dilution is the process of converting a concentrated solution into a dilute solution by adding the solvent. In the resultant solution, the amount of solute remains fixed but the volume of the solution increases. The moles of solute before and after dilution remain fixed. The expression to relate the molarity of a concentrated and dilute solution is: M 1 V 1 = M 2 V 2 (1) Here, M 1 is the molarity of the dilute solution. V 1 is the volume of dilute solution. M 2 is the molarity of the concentrated solution. V 2 is the volume of the concentrated solution.
Molarity of a solution prepared by diluting 37.00 mL of 0.250 M potassium chloride to 150.00 mL is to be calculated. Concept introduction: Dilution is the process of converting a concentrated solution into a dilute solution by adding the solvent. In the resultant solution, the amount of solute remains fixed but the volume of the solution increases. The moles of solute before and after dilution remain fixed. The expression to relate the molarity of a concentrated and dilute solution is: M 1 V 1 = M 2 V 2 (1) Here, M 1 is the molarity of the dilute solution. V 1 is the volume of dilute solution. M 2 is the molarity of the concentrated solution. V 2 is the volume of the concentrated solution.
Molarity of a solution prepared by diluting 37.00 mL of 0.250M potassium chloride to 150.00 mL is to be calculated.
Concept introduction:
Dilution is the process of converting a concentrated solution into a dilute solution by adding the solvent. In the resultant solution, the amount of solute remains fixed but the volume of the solution increases. The moles of solute before and after dilution remain fixed.
The expression to relate the molarity of a concentrated and dilute solution is:
M1V1=M2V2 (1)
Here,
M1 is the molarity of the dilute solution.
V1 is the volume of dilute solution.
M2 is the molarity of the concentrated solution.
V2 is the volume of the concentrated solution.
(b)
Interpretation Introduction
Interpretation:
Molarity of a solution prepared by diluting 25.71 mL of 0.0706M ammonium sulfate to 500.00 mL is to be calculated.
Concept introduction:
Dilution is the process of converting a concentrated solution into a dilute solution by adding the solvent. In the resultant solution, the amount of solute remains fixed but the volume of the solution increases. The moles of solute before and after dilution remain fixed.
The expression to relate the molarity of a concentrated and dilute solution is:
M1V1=M2V2 (1)
Here,
M1 is the molarity of the dilute solution.
V1 is the volume of dilute solution.
M2 is the molarity of the concentrated solution.
V2 is the volume of the concentrated solution.
(c)
Interpretation Introduction
Interpretation:
Molarity of sodium ion in a solution made by mixing 3.58 mL of 0.348M sodium chloride with 500 mL of 6.81×10−2M sodium sulfate is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L.
The expression to calculate the moles of ions from compound when molarity of solution and volume of solution are given is as follows:
Moles of ion from compound(mol)=[volume of solution(L)(1000mL1L)(molarityofsolution(mol)1L of solution)(moleofcharge on ion1mol of compound)] (3)
Using the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.
Synthesis of Dibenzalacetone
[References]
Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below.
Question 1
1 pt
Question 2
1 pt
Question 3
1 pt
H
Question 4
1 pt
Question 5
1 pt
Question 6
1 pt
Question 7
1pt
Question 8
1 pt
Progress:
7/8 items
Que Feb 24 at
You do not have to consider stereochemistry.
. Draw the enolate ion in its carbanion form.
• Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner.
⚫ Separate multiple reactants using the + sign from the drop-down menu.
?
4
Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)