The volume ( mL ) of 2.26 M potassium hydroxide that contains 8.42 g of solute is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows: Volume of solution ( L ) = moles of solute ( mol ) ( 1 L of solution molarity of solution ( mol ) ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
The volume ( mL ) of 2.26 M potassium hydroxide that contains 8.42 g of solute is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows: Volume of solution ( L ) = moles of solute ( mol ) ( 1 L of solution molarity of solution ( mol ) ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
The volume (mL) of 2.26M potassium hydroxide that contains 8.42 g of solute is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows:
Volume of solution(L)=moles of solute(mol)(1L of solutionmolarity of solution(mol))
The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows:
Moles of compound(mol)=[given massof compound(g)(1moleof compound(mol)molecular mass of compound(g))]
(b)
Interpretation Introduction
Interpretation:
The number of Cu2+ ions in 52L of 2.3Mcopper(II)chloride is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows:
Moles of compound(mol)=[volume of solution(L)(molarityofsolution(mol)1L of solution)]
The expression to calculate the amount of ions in moles is as follows:
amountofion(mol)=(moles of compound(mol))(moles of ion(mol)1mole of compound)
The expression to calculate the number of ions is as follows:
numberof ions=(moles of ions(mol))(6.022×1023ions1mole of ions)
(c)
Interpretation Introduction
Interpretation:
Molarity of 275 mL of solution containing 135 mmol of glucose is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows:
Molarity of solution(M)=moles of solute(mol)volume of solution(L)
Explain what is the maximum absorbance of in which caffeine absorbs?
Explain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?
Protecting Groups and Carbonyls
6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet
shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to
generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation,
reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.)
III + VI
HS
HS
H+
CH,CH,Li
III
I
II
IV
CI + P(Ph)3
V
༼
Hint: no strong base added
VI
S
VII
IX
HO
VIII
-MgBr
HgCl2,HgO
HO.
isomerization
aqeuous solution
H,SO,
༽༽༤༽༽
X
MeOH
Hint: enhances selectivity for reaction at the S
X
☑