(a)
Interpretation:
Benzene
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
A compound is soluble in water when the forces between the ions or atoms of the compound and ions of water molecules are greater than forces between the ions or atoms themselves in a compound. Ionic and polar covalent compounds are soluble in water.
In an ionic compound, the ions get separates in the water and form cations and anions. The positive end of water is attracted towards the anions and the negative end of water is attracted towards the cations. The ions get hydrated and the compound dissolves.
In polar covalent compounds, the atoms get polarized in the water molecule and become partially positive charged and partially negative charged. The positive end of water is attracted towards the partially negative charged atom and the negative end of water is attracted towards the partially positive charged. The atoms get hydrated and the compound dissolves.
In non-polar covalent compounds, there is no electronegativity difference between the atoms so there will be no polarization of the compound. Therefore, these compounds will interact less with water and are insoluble in water.
(b)
Interpretation:
Sodium hydroxide is soluble in water or not is to be determined.
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
A compound is soluble in water when the forces between the ions or atoms of the compound and ions of water molecules are greater than forces between the ions or atoms themselves in a compound. Ionic and polar covalent compounds are soluble in water.
In an ionic compound, the ions get separates in the water and form cations and anions. The positive end of water is attracted towards the anions and the negative end of water is attracted towards the cations. The ions get hydrated and the compound dissolves.
In polar covalent compounds, the atoms get polarized in the water molecule and become partially positive charged and partially negative charged. The positive end of water is attracted towards the partially negative charged atom and the negative end of water is attracted towards the partially positive charged. The atoms get hydrated and the compound dissolves.
In non-polar covalent compounds, there is no electronegativity difference between the atoms so there will be no polarization of the compound. Therefore, these compounds will interact less with water and are insoluble in water.
(c)
Interpretation:
Ethanol
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
A compound is soluble in water when the forces between the ions or atoms of the compound and ions of water molecules are greater than forces between the ions or atoms themselves in a compound. Ionic and polar covalent compounds are soluble in water.
In an ionic compound, the ions get separates in the water and form cations and anions. The positive end of water is attracted towards the anions and the negative end of water is attracted towards the cations. The ions get hydrated and the compound dissolves.
In polar covalent compounds, the atoms get polarized in the water molecule and become partially positive charged and partially negative charged. The positive end of water is attracted towards the partially negative charged atom and the negative end of water is attracted towards the partially positive charged. The atoms get hydrated and the compound dissolves.
In non-polar covalent compounds, there is no electronegativity difference between the atoms so there will be no polarization of the compound. Therefore, these compounds will interact less with water and are insoluble in water.
(d)
Interpretation:
Potassium acetate is soluble in water or not is to be determined.
Concept introduction:
A solution is a combination of two parts: solute and solvent. A solute is the substance that is present in small quantity and solvent is the substance in which solute is dissolved. When water acts as a solvent then it is known as an aqueous solution.
A compound is soluble in water when the forces between the ions or atoms of the compound and ions of water molecules are greater than forces between the ions or atoms themselves in a compound. Ionic and polar covalent compounds are soluble in water.
In an ionic compound, the ions get separates in the water and form cations and anions. The positive end of water is attracted towards the anions and the negative end of water is attracted towards the cations. The ions get hydrated and the compound dissolves.
In polar covalent compounds, the atoms get polarized in the water molecule and become partially positive charged and partially negative charged. The positive end of water is attracted towards the partially negative charged atom and the negative end of water is attracted towards the partially positive charged. The atoms get hydrated and the compound dissolves.
In non-polar covalent compounds, there is no electronegativity difference between the atoms so there will be no polarization of the compound. Therefore, these compounds will interact less with water and are insoluble in water.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
CHEMISTRY: MOLECULAR...(LLF) W/CONNECT
- 6. Consider the following exothermic reaction below. 2Cu2+(aq) +41 (aq)2Cul(s) + 12(aq) a. If Cul is added, there will be a shift left/shift right/no shift (circle one). b. If Cu2+ is added, there will be a shift left/shift right/no shift (circle one). c. If a solution of AgNO3 is added, there will be a shift left/shift right/no shift (circle one). d. If the solvent hexane (C6H14) is added, there will be a shift left/shift right/no shift (circle one). Hint: one of the reaction species is more soluble in hexane than in water. e. If the reaction is cooled, there will be a shift left/shift right/no shift (circle one). f. Which of the changes above will change the equilibrium constant, K?arrow_forwardShow work. don't give Aiarrow_forwardShow work with explanation needed. don't give Ai generated solutionarrow_forward
- Show work with explanation needed. Don't give Ai generated solutionarrow_forward7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pHarrow_forwardA first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?arrow_forward
- 3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)arrow_forward2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forward
- The following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY