EBK FIRST COURSE IN PROBABILITY, A
10th Edition
ISBN: 9780134753676
Author: Ross
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.11STPE
a.
To determine
To find: The
b.
To determine
To find: The probability that team A will win the first game given it will win the series.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At the beginning of each semester, students at the University of Minnesota receive one prepaid copy card
that allows them to print from the copiers and printers on campus. The amount of money remaining on the
card can be modeled by a linear equation where A represents how much remains on the card (in dollars)
and p represents the number of pages that the student has printed. The graph of this linear equation is
given below.
100
90
80
70
60
50
40
30
20
10
0
A = Amount on Card ($)
0
200
400
600
800 1000 1200 1400 1600
p = Number of Pages Printed
What information does the vertical intercept tell you (represent) for this problem? Be sure to include
specific details in your answer -- your answer should have both quantitative and qualitative data to
describe the answer in terms of the question.
Data management no 2 thanks
G12 Data Management please help on the first question no 1 below
Chapter 4 Solutions
EBK FIRST COURSE IN PROBABILITY, A
Ch. 4 - Two balls are chosen randomly from an urn...Ch. 4 - Two fair dice are rolled, Let X equal the product...Ch. 4 - Three dice are rolled. By assuming that each of...Ch. 4 - Five men and 5 women are ranked according to their...Ch. 4 - Let X represent the difference between the number...Ch. 4 - In Problem 4.5 for n=3, if the coin is assumed...Ch. 4 - Suppose that a die is rolled twice. What are the...Ch. 4 - If the die in Problem 4.7 is assumed fair,...Ch. 4 - Repeat Example 1c, when the balls are selected...Ch. 4 - Let X be the winnings of a gambler. Let...
Ch. 4 - The random variable X is said to follow the...Ch. 4 - In the game of Two-Finger Morra, 2 players show 1...Ch. 4 - A salesman has scheduled two appointments to sell...Ch. 4 - Five distinct numbers are randomly distributed to...Ch. 4 - The National Basketball Association (NBA) draft...Ch. 4 - A deck of n cards numbered 1 through n are to be...Ch. 4 - Suppose that the distribution function of X is...Ch. 4 - Four independent flips of a fair coin are made....Ch. 4 - If the distribution function of X is given...Ch. 4 - A gambling book recommends the following winning...Ch. 4 - Four buses carrying 148 students from the same...Ch. 4 - Suppose that two teams play a series of games that...Ch. 4 - You have $1000, and a certain commodity presently...Ch. 4 - A and B play the following game: A writes down...Ch. 4 - Prob. 4.25PCh. 4 - One of the numbers I through 10 is randomly...Ch. 4 - An insurance company writes a policy to the effect...Ch. 4 - A sample of 3 items is selected at random from a...Ch. 4 - There are two possible causes for a breakdown of a...Ch. 4 - A person tosses a fair coin until a tail appears...Ch. 4 - 4.31. Each night different meteorologists give us...Ch. 4 - To determine whether they have a certain disease,...Ch. 4 - A newsboy purchases papers at 10 cents and sells...Ch. 4 - Prob. 4.34PCh. 4 - A box contains 5 red and 5 blue marbles. Two...Ch. 4 - Consider the friendship network described by...Ch. 4 - Consider Problem 4.22 t with i=2. Find the...Ch. 4 - Find Var (X) and Var (Y) for X and as given in...Ch. 4 - If E[X]=1 and var(X)=5, find a. E[(2+X)2]; b....Ch. 4 - A ball is drawn from an urn containing 3 white and...Ch. 4 - On a multiple-choice exam with 3 possible answers...Ch. 4 - A man claims to have extrasensory perception. As a...Ch. 4 - A and B will take the same 10-question...Ch. 4 - A communications channel transmits the digits 0...Ch. 4 - A satellite system consists of n components and...Ch. 4 - A student is getting ready to take an important...Ch. 4 - Suppose that it takes at least 9 votes from a...Ch. 4 - In some military courts, 9 judges are appointed....Ch. 4 - It is known that diskettes produced by a certain...Ch. 4 - When coin 1 is flipped, it lands on heads with...Ch. 4 - Each member of a population of size n is,...Ch. 4 - In a tournament involving players 1,2,3,4, players...Ch. 4 - Suppose that a biased coin that lands on heads...Ch. 4 - The expected number of typographical errors on a...Ch. 4 - The monthly worldwide average number of airplane...Ch. 4 - Approximately 80000 marriages took place in the...Ch. 4 - State your assumptions. Suppose that the average...Ch. 4 - A certain typing agency employs 2 typists. The...Ch. 4 - How many people are needed so that the probability...Ch. 4 - Suppose that the number of accidents occurring on...Ch. 4 - Compare the Poisson approximation with the correct...Ch. 4 - If you buy a lottery ticket in 50 lotteries, in...Ch. 4 - The number of times that a person contracts a cold...Ch. 4 - The probability of being dealt a full house in a...Ch. 4 - Consider n, independent trials, each of which...Ch. 4 - People enter a gambling casino at a rate of 1...Ch. 4 - The suicide rate in a certain state is 1 suicide...Ch. 4 - Each of 500 soldiers in an army company...Ch. 4 - A total of 2n people, consisting of n married...Ch. 4 - Prob. 4.70PCh. 4 - In response to an attack of 10 missiles, 500...Ch. 4 - A fair coin is flipped 10 times. Find the...Ch. 4 - At time 0, a coin that comes up heads with...Ch. 4 - Consider a roulette wheel consisting of 38 numbers...Ch. 4 - Two athletic teams play a series of games; the...Ch. 4 - Suppose in Problem 4.75 that the two teams are...Ch. 4 - An interviewer is given a list of people she can...Ch. 4 - Prob. 4.78PCh. 4 - Solve the Banach match problem (Example 8e) when...Ch. 4 - In the Banach matchbox problem, find the...Ch. 4 - An urn contains 4 white and 4 black balls. We...Ch. 4 - Suppose that a batch of 100 items contains 6 that...Ch. 4 - A game popular in Nevada gambling casinos is Keno,...Ch. 4 - In Example 81 what percentage of i defective lots...Ch. 4 - A purchaser of transistors buys them in lots of...Ch. 4 - There are three highways in the county. The number...Ch. 4 - Suppose that 10 balls are put into 5 boxes, with...Ch. 4 - There are k types of coupons. Independently of the...Ch. 4 - An urn contains 10 red, S black, and 7 green...Ch. 4 - There are N distinct types of coupons, and each...Ch. 4 - If X has distribution function F, what is the...Ch. 4 - If X has distribution function F, what is the...Ch. 4 - The random variable X is said to have the...Ch. 4 - Let N be a nonnegative integer-valued random...Ch. 4 - Let X be such that P{X=1}=p=1P{X=1}. Find c1 such...Ch. 4 - Let X be a random variable having expected value ...Ch. 4 - Find Var (X) if P(X=a)=(1)=p=1P(X=b)Ch. 4 - Show how the derivation of the binomial...Ch. 4 - Let X be a binomial random variable with...Ch. 4 - Let X be the number of successes that result from...Ch. 4 - Consider n independent sequential trials, each of...Ch. 4 - There are n components lined up in a linear...Ch. 4 - Let X be a binomial random variable with...Ch. 4 - A family has n children with probability pn,n1...Ch. 4 - Suppose that n independent tosses of a coin having...Ch. 4 - Let X be a Poisson random variable with parameter...Ch. 4 - Let X be a Poisson random variable with parameter ...Ch. 4 - Prob. 4.19TECh. 4 - Show that X is a Poisson random variable with...Ch. 4 - Consider n coins, each of which independently...Ch. 4 - From a set of n randomly chosen people, let Eij...Ch. 4 - An urn contains 2 n balls, of which 2 are numbered...Ch. 4 - Consider a random collection of n individuals. In...Ch. 4 - Here is another way to obtain a set of recursive...Ch. 4 - Suppose that the number of events that occur in a...Ch. 4 - Prove i=0nii!=1n!exxndx Hint: Use integration by...Ch. 4 - If X is a geometric random variable, show...Ch. 4 - Let X be a negative binomial random variable with...Ch. 4 - For a hyper geometric random variable,...Ch. 4 - Balls numbered I through N are in an urn. Suppose...Ch. 4 - A jar contains m+n chips, numbered 1, 2,. ., n+m....Ch. 4 - Prob. 4.33TECh. 4 - Prob. 4.34TECh. 4 - Prob. 4.35TECh. 4 - An urn initially contains one red and one blue...Ch. 4 - Prob. 4.37TECh. 4 - Prob. 4.1STPECh. 4 - Prob. 4.2STPECh. 4 - A coin that when flipped comes up heads with...Ch. 4 - Prob. 4.4STPECh. 4 - Suppose that P{X=0}=1P{X=1}. If E[X]=3Var(X), find...Ch. 4 - There are 2 coins in a bin. When one of them is...Ch. 4 - Prob. 4.7STPECh. 4 - Prob. 4.8STPECh. 4 - Prob. 4.9STPECh. 4 - An urn contains n balls numbered 1 through n. If...Ch. 4 - Prob. 4.11STPECh. 4 - Prob. 4.12STPECh. 4 - Each of the members of a 7-judge panel...Ch. 4 - Prob. 4.14STPECh. 4 - The number of eggs laid on a tree leaf by an...Ch. 4 - Each of n boys and n girls, independently and...Ch. 4 - A total of 2n people, consisting of n married...Ch. 4 - Prob. 4.18STPECh. 4 - Prob. 4.19STPECh. 4 - Show that if X is a geometric random variable with...Ch. 4 - Suppose that P{X=a}=p,P{X=b}=1p a. Show that Xbab...Ch. 4 - Prob. 4.22STPECh. 4 - Balls are randomly withdrawn, one at a time...Ch. 4 - Ten balls are to be distributed among 5 urns, with...Ch. 4 - For the match problem (Example 5m in Chapter 2),...Ch. 4 - Let be the probability that a geometric random...Ch. 4 - Two teams will play a series of games, with the...Ch. 4 - An urn has n white and m black balls. Balls are...Ch. 4 - Prob. 4.29STPECh. 4 - If X is a binomial random variable with parameters...Ch. 4 - Let X be the ith smallest number in a random...Ch. 4 - Balls are randomly removed from an urn consisting...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Total marks 14 4. Let X and Y be random variables on a probability space (N, F, P) that take values in [0, ∞). Assume that the joint density function of X and Y on [0, ∞) × [0, ∞) is given by f(x, y) = 2e-2x-y Find the probability P(0 ≤ X ≤ 1,0 ≤ y ≤ 2). (ii) spectively. [6 Marks] Find the the probability density function of X and Y, re- [5 Marks] 111) Are the X and Y independent? Justify your answer! [3 Marks]arrow_forwardTotal marks 17 4. Let (,,P) be a probability space and let X : → R be a ran- dom variable that has Gamma(2, 1) distribution, i.e., the distribution of the random variable X is the probability measure on ((0, ∞), B((0, ∞))) given by (i) dPx(x) = xex dx. Find the characteristic function of the random variable X. [8 Marks] (ii) Using the result of (i), calculate the first three moments of the random variable X, i.e., E(X") for n = 1, 2, 3. Using Markov's inequality involving E(X³), (iii) probability P(X > 10). [6 Marks] estimate the [3 Marks]arrow_forward1. There are 8 balls in an urn, of which 6 balls are red, 1 ball is blue and 1 ball is white. You draw a ball from the urn at random, note its colour, do not return the ball to the urn, and then draw a second ball, note its colour, do not return the ball to the urn, and finally draw a third ball, note its colour. (i) (Q, F, P). Describe the corresponding discrete probability space [7 Marks] (ii) Consider the following event, A: At least one of the first two balls is red.arrow_forward
- 3. Consider the following discrete probability space. Let = {aaa, bbb, ccc, abc, acb, bac, bca, cab, cba}, i.e., consists of 3-letter 'words' aaa, bbb, ccc, and all six possible 3-letter 'words' that have a single letter a, a single letter b, and a single letter c. The probability measure P is given by 1 P(w) = for each weΩ. 9 Consider the following events: A: the first letter of a 'word' is a, B: the second letter of a 'word' is a, C: the third letter of a 'word' is a. answer! Decide whether the statements bellow are true or false. Justify your (i) The events A, B, C are pairwise independent. (ii) The events A, B, C are independent. Total marks 7 [7 Marks]arrow_forwardLet X and Y have the following joint probability density function: fxy(x,y) =1/(x²²), for >>1, y>1 0, otherwise Let U = 5XY and V = 3 x. In all question parts below, give your answers to three decimal places (where appropriate). (a) The non-zero part of the joint probability density function of U and V is given by fu,v(u,v) = A√³uc for some constants A, B, C. Find the value of A. Answer: 5 Question 5 Answer saved Flag question Find the value of B. Answer: -1 Question 6 Answer saved P Flag question (b) The support of (U,V), namely the values of u and vthat correspond to the non-zero part of fu,v(u,v) given in part (a), is given by:arrow_forwardTotal marks 13. 3. There are three urns. Urn I contains 3 blue balls and 5 white balls; urn II contains 2 blue balls and 6 white balls; urn III contains 4 blue balls and 4 white balls. Rolling a dice, if 1 appears, we draw a ball from urn I; if 4 or 5 or 6 appears, we draw a ball from urn II; if 2, or 3 appears, we draw a ball from urn III. (i) What is the probability to draw a blue ball? [7 Marks] (ii) Assume that a blue ball is drawn. What is the probability that it came from Urn I? [6 Marks] Turn over. MA-252: Page 3 of 4arrow_forward
- 3. Consider the discrete probability space with the sample space = {a, b, c, d, e, f, g, h} and the probability measure P given by P(w) for each wEN. Consider the following events: A = {a, c, e, g}, B = {b, c, d, e}, C = = {a, b, d, g}. Decide whether the statements bellow are true or false. Justify your answer! (i) The events A, B, C are pairwise independent. (ii) The events A, B, C are independent. Total marks 6 [6 Marks]arrow_forward2. space Consider the discrete probability space (N, F, P) with the sample N = {W1 W2 W3 W4 W5, W6, W7, W8, W9, W10, W11, W12}, is the power of 2, and the probability measure P is given by 1 P(wi) for each i = 1, 12. 12 Consider the following events: A = {W1, W3, W5, W7, W9, W11}, C = B = {W1, WA, W7, W8, W9, W12}, = {W3, WA, W5, W6, W9, W12}. Decide whether the statements bellow are true or false. Justify your answer! (i) The events A, B, C are pairwise independent. [5 Marks] Total marks 8 (ii) The events A, B, C are independent. [3 Marks]arrow_forwardshould my answer be 2.632 or -2.632?arrow_forward
- 2. Alice has three unfair coins. The first coin shows heads with proba- bility 0.3 and tails with probability 0.7. The second coin shows heads with probability 0.9 and tails with probability 0.1. The third coin shows heads with probability 0.4 and tails with probability 0.6. First, Alice throws a dice. If the dice yields a 1 or 2, Alice tosses the first coin. If the dice yields a 3, Alice tosses the second coin. If the dice yields a 4 or 5, or 6, Alice tosses the third coin. (i) What is the probability of the following event: as a result of throwing the dice and then tossing a coin, tails appear. [7 Marks] Assume a coin shows tails. What is the probability that Alice (ii) tossed (a) the first coin; (b) the second coin; Total marks 11 (c) the third coin? [4 Marks]arrow_forwardIn a Poisson process with A = 500 arrivals per day, find the approximate probability that the thousandth arrival comes between 47.5 and 48.5 hours after the start of observations.arrow_forwardSuppose you generate 300 independent observations X1, ..., X300 from a Uniform(0,3) distribution. a) What is the approximate distribution of X? b) What is the approximate probability that X is less than 1.57? c) What is the approximate probability that the sum S300 = X₁++X300 is between 442 and 483?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License