FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 36P
The velocity field of a flow is described by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The velocity vector in a fluid flow is given by V = 2xy3i – 5x2yj + 4xyztk. Find the velocity and acceleration of a fluid particle at (1, 2, 1) at time, t = 0.
Course: Fluid Mechanics
Flow through a converging nozzle can be approximated by a one-dimensional velocity
distribution u=vo (1+2). For the nozzle shown below, assume that the velocity varies
linearly from u = vo at the entrance to u = 3v, at the exit. Compute the acceleration at the
entrance and exit if vo=10m/s and L = 1m.
x=0
X
u=
:326
x=L
Chapter 4 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 4 - What does the word kinematics mean? Explain what...Ch. 4 - Briefly discuss the difference between derivative...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - Consider the following steady, two-dimensional...Ch. 4 - -5 A steady, two-dimensional velocity field is...Ch. 4 - Consider steady flow of water through an...Ch. 4 - What is the Eulerian description of fluid motion?...Ch. 4 - Is the Lagrangian method of fluid flow analysis...Ch. 4 - A stationary probe is placed in a fluid flow and...Ch. 4 - A tiny neutrally buoyant electronic pressure probe...
Ch. 4 - Define a steady flow field in the Eulerian...Ch. 4 - Is the Eulerian method of fluid flow analysis more...Ch. 4 - A weather balloon is hunched into the atmosphere...Ch. 4 - A Pilot-stalk probe can often be seen protruding...Ch. 4 - List at least three oiler names for the material...Ch. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - For the velocity field of Prob. 4-6, calculate the...Ch. 4 - Consider steady flow of air through the diffuser...Ch. 4 - For the velocity field of Prob. 4-21, calculate...Ch. 4 - A steady, incompressible, two-dimensional (in the...Ch. 4 - The velocity field for a flow is given by...Ch. 4 - Prob. 25CPCh. 4 - What is the definition of a timeline? How can...Ch. 4 - What is the definition of a streamline? What do...Ch. 4 - Prob. 28CPCh. 4 - Consider the visualization of flow over a 15°...Ch. 4 - Consider the visualization of ground vortex flow...Ch. 4 - Consider the visualization of flow over a sphere...Ch. 4 - Prob. 32CPCh. 4 - Consider a cross-sectional slice through an array...Ch. 4 - A bird is flying in a room with a velocity field...Ch. 4 - Conversing duct flow is modeled by the steady,...Ch. 4 - The velocity field of a flow is described by...Ch. 4 - Consider the following steady, incompressible,...Ch. 4 - Consider the steady, incompressible,...Ch. 4 - A steady, incompressible, two-dimensional velocity...Ch. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - The velocity field for a line some in the r plane...Ch. 4 - A very small circular cylinder of radius Rtis...Ch. 4 - Consider the same two concentric cylinders of...Ch. 4 - The velocity held for a line vartex in the r...Ch. 4 - Prob. 47PCh. 4 - Name and briefly describe the four fundamental...Ch. 4 - Prob. 49CPCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Converging duct flow is modeled by the steady,...Ch. 4 - Using the results of Prob. 4—57 and the...Ch. 4 - Converging duct flow (Fig. P4—16) is modeled by...Ch. 4 - Prob. 60PCh. 4 - For the velocity field of Prob. 4—60, what...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - For the velocity field of Prob. 4—60, calculate...Ch. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Consider steady, incompressible, two-dimensional...Ch. 4 - Prob. 67PCh. 4 - Consider the steady, incompressible,...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - A cylindrical lank of water rotates in solid-body...Ch. 4 - Prob. 75PCh. 4 - A cylindrical tank of radius rrim= 0.354 m rotates...Ch. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - For the Couette flow of Fig. P4—79, calculate the...Ch. 4 - Combine your results from Prob. 4—80 to form the...Ch. 4 - Consider a steady, two-dimensional, incompressible...Ch. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Consider the following steady, three-dimensional...Ch. 4 - Prob. 85PCh. 4 - A steady, three-dimensional velocity field is...Ch. 4 - Briefly explain the purpose of the Reynolds...Ch. 4 - Prob. 88CPCh. 4 - True or false: For each statement, choose whether...Ch. 4 - Consider the integral ddtt2tx2. Solve it two ways:...Ch. 4 - Prob. 91PCh. 4 - Consider the general form of the Reynolds...Ch. 4 - Consider the general form of the Reynolds...Ch. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - The velocity field for an incompressible flow is...Ch. 4 - Consider fully developed two-dimensional...Ch. 4 - For the two-dimensional Poiseuille flow of Prob....Ch. 4 - Combine your results from Prob. 4—100 to form the...Ch. 4 - Prob. 103PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 116PCh. 4 - Based on your results of Prob. 4—116, discuss the...Ch. 4 - Prob. 118PCh. 4 - In a steady, two-dimensional flow field in the...Ch. 4 - A steady, two-dimensional velocity field in the...Ch. 4 - A velocity field is given by u=5y2,v=3x,w=0 . (Do...Ch. 4 - The actual path traveled by an individual fluid...Ch. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Water is flowing in a 3-cm-diameter garden hose at...Ch. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - An array of arrows indicating the magnitude and...Ch. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135PCh. 4 - A steady, two-dimensional velocity field is given...Ch. 4 - Prob. 137PCh. 4 - Prob. 138PCh. 4 - Prob. 139PCh. 4 - Prob. 140PCh. 4 - Prob. 141P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- navier stokesarrow_forwardA flow is described by velocity field, V=ayi+btj, where a=1 s-1and b=0.5 m/s2.At t=n s (Where n is 19), what are the coordinates of the particle that passed through point (1,2) at t=n-1? At t=n+1 s, what are the coordinates of the particle that passed through point (1,2) at t=n+1 s? Plot the pathline and streakline through point (1,2) and compare with the streamlines through the same point at the instants t=n-1 , n and n+1 s.arrow_forwardIn a stream line steady flow, two points A and B on a stream line are 1 m apart and the flow velocity varies uniformly from 2 m/s to 5 m/s/ What is the acceleration of fluid B?arrow_forward
- 2. Consider the two-dimensional time-dependent velocity field u(x, t) = (sint, cost, 0), in the basis of Cartesian coordinates. a) Determine the streamlines passing through the point x = 0 at the times t = 0, π/2, π and 3π/2. b) Determine the paths of fluid particles passing through the point x = 0 at the same times, to = 0, π/2, 7 and 37/2. Hence, describe their motion. ㅠ c) Find the streakline produced by tracer particles continuously released at the point xo = 0 and find its position at t = 0, π/2, π and 37/2. Hence describe its motion.arrow_forwardThe velocity vector in a flow is given by :V=-3xi-4yj-7zk Determine the stream equation passing through a point L(4,2,3)arrow_forwardFor each part below, calculate all quantities that are not given from the following list:F (z), φ, ψ, w(z), ~vNote that F (z) is the complex potential, φ is the velocity potential, ψ is the stream function, w(z)is the complex velocity, and ~v is the real velocity. If a quantity does not exist, state why not.i) F = (1/3)iz3ii) ψ = ex cos(y)iii) φ = ln √(x2 + y2)iv) w = z + 1/zv) ~v = xˆi + yˆjarrow_forward
- 2. Consider the Eulerian velocity field u(x, t) = y i + (x – sin t) j, where x = x i + yj and t is the time. Please explain how to find an expression for the streamlines that pass through the point (0, yo) for yo ER. Then, find the nonparametric expression for the pathline of the particle that passes through the point (0, 1/2 ) at t = 0, describing the motion.arrow_forwardA stream function is given by = 4x – 3y. The resultant velocity at any point isarrow_forward1. Stagnation Points A steady incompressible three dimensional velocity field is given by: V = (2 – 3x + x²) î + (y² – 8y + 5)j + (5z² + 20z + 32)k Where the x-, y- and z- coordinates are in [m] and the magnitude of velocity is in [m/s]. a) Determine coordinates of possible stagnation points in the flow. b) Specify a region in the velocity flied containing at least one stagnation point. c) Find the magnitude and direction of the local velocity field at 4- different points that located at equal- distance from your specified stagnation point.arrow_forward
- 4 = 3x2 – y represents a stream function in a two – dimensional flow. The velocity component in 'x' direction at the point (1, 3) is:arrow_forwardThe velocity of flow of fluid is represented by the equation: V=2xi +3vj. The equation of the stream line passing through the point (4,3) is (A) 0.72x = 1,2 (B)¹ = 0.72x¹/² (C) 0.72x2=2 (D) None of thesearrow_forward1. For a flow in the xy-plane, the y-component of velocity is given by v = y2 −2x+ 2y. Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? 2. The x-component of velocity in a steady, incompressible flow field in the xy-plane is u = A/x. Find the simplest y-component of velocity for this flow field.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license