
General Chemistry: Principles and Modern Applications (11th Edition)
11th Edition
ISBN: 9780132931281
Author: Ralph H. Petrucci, F. Geoffrey Herring, Jeffry D. Madura, Carey Bissonnette
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 27E
Interpretation Introduction
Interpretation:
The mass of hydrogen gas produced should be calculated.
Concept introduction:
The study in which the amount of materials i.e. reactant or products are consumed or produced is known as stoichiometry.
Number of moles is defined as the ratio of mass to the molar mass. The mathematical expression is given by:
Number of moles =
The mathematical expression for density is:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a
4 shows scanning electron microscope (SEM) images of extruded
actions of packing bed for two capillary columns of different diameters,
al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the
same stationary phase, spherical particles with 1-um diameter.
A) When the columns were prepared, the figure shows that the column with
the larger diameter has more packing irregularities. Explain this observation.
B) Predict what affect this should have on band broadening and discuss your
prediction using the van Deemter terms.
C) Does this figure support your explanations in application question 33?
Explain why or why not and make any changes in your answers in light of
this figure.
Figure 4 SEM images of
sections of packed columns
for a) 750 and b) 30-um-i.d.
capillary columns.³
fcrip
= ↓ bandwidth Il temp
32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual
components of the van Deemter equation and consequently, band broadening?
Increase temperature
Longer column
Using a gas mobile phase
instead of liquid
Smaller particle stationary phase
Multiple Paths
Diffusion
Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.).
A) Predict whether decreasing the column inner diameters increase or decrease bandwidth.
B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or
decreasing bandwidth as a function of i.d. and justify your answer.
Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was
obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles.
35
20
H(um)
큰 20
15
90
0+
1500
100
75
550
01
02
594
05
μ(cm/sec)
30
15
10
Chapter 4 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
Ch. 4 - Balance the following equations by inspection. a....Ch. 4 - Balance the following equations by inspection. a....Ch. 4 - Balance the following equations by inspection. a....Ch. 4 - Balance the following equations by inspection. a....Ch. 4 - Write balanced equations based on the information...Ch. 4 - Write balanced equations based on the information...Ch. 4 - Write balanced equations to represent the complete...Ch. 4 - Write balanced equations to represent the complete...Ch. 4 - Write balanced equations to represent a. the...Ch. 4 - Write balanced equations to represent: a. the...
Ch. 4 - Write a balanced chemical equation for the...Ch. 4 - Write a balanced chemical equation for the...Ch. 4 - Prob. 13ECh. 4 - A 3.104 g sample of an oxide of manganese contains...Ch. 4 - Iron metal reacts with chlorine gas. How many...Ch. 4 - If 75.8gPCI2 is produced by the reaction...Ch. 4 - A laboratory method of preparing O2g involves the...Ch. 4 - A commercial method of manufacturing hydrogen...Ch. 4 - How many grams of Ag2CO2 are decomposed to yield...Ch. 4 - How many kilograms of HNO2 are consumed to produce...Ch. 4 - The reaction of calcium hydride with water can be...Ch. 4 - The reaction of potassium superoxide, KO2, is used...Ch. 4 - Prob. 23ECh. 4 - Sold silver oxide, Ag2O (s), decomposes at...Ch. 4 - Decarborane, B10H14, was used as a fuel for...Ch. 4 - The rocket boosters of the space shuttle...Ch. 4 - Prob. 27ECh. 4 - An excess of aluminum foil is allowed to react...Ch. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - What are the molarities of the following solutes...Ch. 4 - Prob. 32ECh. 4 - What are the molarities of the following solutes?...Ch. 4 - What ere the molarities of the following solutes?...Ch. 4 - How much a. glucose, C5H12O5, in grams, must be...Ch. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - In many communities, water is fluoridated to...Ch. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - Prob. 42ECh. 4 - A 10.00 mL sample of 2.05MKNO2 is diluted to a...Ch. 4 - What volume of 2.00MAgNO2 must be diluted with...Ch. 4 - Water is evaporated from 125 mL of 0.198MK2SO4...Ch. 4 - A 25.0 mL sample of HCl(aq) is diluted to a volume...Ch. 4 - Prob. 47ECh. 4 - Prob. 48ECh. 4 - Prob. 49ECh. 4 - Excess NaHCO2 is added to 525 mL of 0.220MCu(...Ch. 4 - How many milliliters of 0.650MK2CrO4 are needed to...Ch. 4 - Consider the reaction below....Ch. 4 - Exactly 1.00 mL of an aqueous solution of HNO2 is...Ch. 4 - A 5.00 mL sample of an aqueous solution of H2PO4...Ch. 4 - Prob. 55ECh. 4 - Prob. 56ECh. 4 - How many grams of Ag2CrO4 will precipitate if...Ch. 4 - What volume of MKMnO4 is necessary to convert 12.5...Ch. 4 - Prob. 59ECh. 4 - A method of lowering the concentration of HCI(aq)...Ch. 4 - Prob. 61ECh. 4 - A 25.00 mL sample of HCI(aq) was to a 0.1000 g...Ch. 4 - How many moles of NO(g) can be produced in the...Ch. 4 - The reaction of calcium hydride and water produces...Ch. 4 - A 0.696 mol sample of Cu is added to 136 mL of...Ch. 4 - How many grams of H2O are produced by the reaction...Ch. 4 - Prob. 67ECh. 4 - Lithopone is a brilliant white pigment used in...Ch. 4 - Ammonia can be generated by heating together he...Ch. 4 - Chlorine can be generated by heating together...Ch. 4 - Chromium(II) sulfate. CrSO4, is a reagent that has...Ch. 4 - Titanium tetrachloride, TiCl4 , is prepared by the...Ch. 4 - In the reaction of 277 g CCI4 an excess of HF,...Ch. 4 - In the reaction shown, 100.0gC5H10OH yielded 64.0...Ch. 4 - Prob. 75ECh. 4 - Nitrogen gas, N2 can be prepared by passing...Ch. 4 - The reactionof 15.0 g C4H2OH, 22.4 g NaBr, and...Ch. 4 - Prob. 78ECh. 4 - How many grams of commercial acetic acid (97%...Ch. 4 - Suppose that reactions (a) and (b) each have a 92%...Ch. 4 - An essentially 100% yield is necessary for a...Ch. 4 - Prob. 82ECh. 4 - How many grams of HCI are consumed the reaction of...Ch. 4 - How many grams of CO2 are produced in the complete...Ch. 4 - Dichlorodifluoromethane, once widely used a...Ch. 4 - Prob. 86ECh. 4 - Prob. 87ECh. 4 - Sodium bromide, used to produce silver bromide for...Ch. 4 - Prob. 89ECh. 4 - The following set of reactions is to be used as...Ch. 4 - Prob. 91ECh. 4 - A mixture of Fe2O2 and FeO was analyzed and found...Ch. 4 - Prob. 93IAECh. 4 - Prob. 94IAECh. 4 - Prob. 95IAECh. 4 - Prob. 96IAECh. 4 - Hydrogen gas, H2O, is passed over Fe2O2(s) at 400...Ch. 4 - A sulfide of iron, 36.5% S by mass, is heated in...Ch. 4 - Prob. 99IAECh. 4 - Prob. 100IAECh. 4 - What volume of 0.149 M HCI must be added to 1.00 ×...Ch. 4 - Prob. 102IAECh. 4 - Prob. 103IAECh. 4 - Prob. 104IAECh. 4 - Prob. 105IAECh. 4 - Prob. 106IAECh. 4 - Prob. 107IAECh. 4 - Prob. 108IAECh. 4 - Prob. 109IAECh. 4 - Prob. 110IAECh. 4 - Prob. 111IAECh. 4 - A 0.155 g sample of an Al-Mg alloy reacts with an...Ch. 4 - Prob. 113IAECh. 4 - The following chemical equation represents the...Ch. 4 - Prob. 115IAECh. 4 - Prob. 116IAECh. 4 - Prob. 117IAECh. 4 - Prob. 118IAECh. 4 - Write a chemical equation to represent the...Ch. 4 - Prob. 120IAECh. 4 - Prob. 121IAECh. 4 - When sulfur (S5) and chlorine are mixed in a...Ch. 4 - Prob. 123IAECh. 4 - Prob. 124IAECh. 4 - Prob. 125IAECh. 4 - Prob. 126IAECh. 4 - Prob. 127IAECh. 4 - Melamine, C2N2( NH2)2, is used in adhesives and...Ch. 4 - Prob. 129IAECh. 4 - A fundamental principle green chemistry is atom...Ch. 4 - The industrial productionof hydrazine (N2H2) by...Ch. 4 - Prob. 132IAECh. 4 - Prob. 133FPCh. 4 - Prob. 134FPCh. 4 - Prob. 135SAECh. 4 - Prob. 136SAECh. 4 - Prob. 137SAECh. 4 - Prob. 138SAECh. 4 - Prob. 139SAECh. 4 - Prob. 140SAECh. 4 - In the decomposition of silver carbonate to form...Ch. 4 - Prob. 142SAECh. 4 - What is the volume (in ML) of 0.160MKNO2 that must...Ch. 4 - To prepare a solution that is 0.50 M KCI starting...Ch. 4 - An aqueous solution that is 5.30% LiBr by mass...Ch. 4 - Prob. 146SAECh. 4 - Consider the reaction 2Fe2O2+3C4Fe+3CO2 . What is...Ch. 4 - Prob. 148SAECh. 4 - The incomplete combustion of gasoline produces...Ch. 4 - Prob. 150SAECh. 4 - Prob. 151SAECh. 4 - Prob. 152SAECh. 4 - For each of the following compounds,write a...Ch. 4 - Appendix E descries a useful study aid known as...
Knowledge Booster
Similar questions
- elow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forwardPredict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forward
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forwardExplain what is the maximum absorbance of in which caffeine absorbs?arrow_forward
- Explain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forwardProtecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forwardDraw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forward
- Explanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax