
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 22P
(II) (a) What is the acceleration of two falling sky divers (mass = 132 kg including parachute) when the upward force of air resistance is equal to one-fourth of their weight? (b) After popping open the parachute, the divers descend leisurely to the ground at constant speed. What now is the force of air resistance on the sky divers and their parachute? See Fig. 4–32.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
What is the practical benefit (in terms of time savings and efficiency) of defining the potential energy? Be clear about what is required in terms of calculation if we do not use the concept of potential energy.
What is the critical angle fir the light travelling from the crown glass(n=1.52) into the air(n=1.00)?
No chatgpt pls will upvote
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.5 - A massive truck collides head-on with a small...Ch. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.7 - A 10.0-kg box is dragged on a horizontal...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - If the acceleration of an object is zero, are no...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - Only one force acts on an object. Can the object...
Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Would a spring scale carried to the Moon give...Ch. 4 - You pull a box with a constant force across a...Ch. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - According to Newtons third law. each team in a tug...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A bear sling, Fig. 430, in used in some national...Ch. 4 - (I) What force is needed to accelerate a child on...Ch. 4 - (1) A net force of 265N accelerates a bike and...Ch. 4 - (I) What is the weight of a 68-kg astronaut (a) on...Ch. 4 - (I) How much tension must a rope withstand if it...Ch. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - (II) What average force is required to stop a...Ch. 4 - (II) Estimate the average force exerted by a...Ch. 4 - (II) A 0.140-kg baseball traveling 35.0 m/s...Ch. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) What average force is needed to accelerate a...Ch. 4 - (II) How much tension must a cable withstand if it...Ch. 4 - (II) A 14.0-kg bucket is lowered vertically by a...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - (II) A 75-kg petty thief wants to escape from a...Ch. 4 - (II) An elevator (mass 4850 kg) is to he designed...Ch. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - (II) A person stands on a bathroom scale in a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - (II) A rocket with a mass of 2.75 106 kg exerts a...Ch. 4 - (II) (a) What is the acceleration of two falling...Ch. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) The cable supporting a 2125-kg elevator has a...Ch. 4 - (III) The 100-m dash can be run by the best...Ch. 4 - (III) A person jumps from the roof of a house...Ch. 4 - (I) A box weighing 77.0 N rests on atable. A rope...Ch. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (II) Christian is making a Tyrolean traverse as...Ch. 4 - (II) A window washer pulls herself upward using...Ch. 4 - (II) One 3.2-kg paint bucket is hanging by a...Ch. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - (II) Two snowcats in Antarctica are towing a...Ch. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - (II) The two forces F1 and F2 shown in Fig. 4-40a...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 40PCh. 4 - (II) Uphill escape ramps are sometimes provided to...Ch. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - (II) A block is given an initial speed of 4.5 m/s...Ch. 4 - (II) An object is hanging by a string from your...Ch. 4 - (II) Figure 4-45 shows a block (mass mA) on a...Ch. 4 - (II) (a) If mA = 13.0 kg and mB = 5.0 kg in Fig....Ch. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Suppose two boxes on a frictionless table...Ch. 4 - (III) The two masses shown in Fig, 450 are each...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - (III) A particle of mass m, initially at rest at x...Ch. 4 - (III) A heavy steel cable of length and mass M...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - A 2.0-kg purse is dropped 58 m from the top of the...Ch. 4 - Toms hang glider supports his weight using the six...Ch. 4 - A wet bar of soap (m = 150 g) slides freely down a...Ch. 4 - A cranes trolley at point P in Fig. 4-53 moves for...Ch. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - (a) In Fig. 454, if mA = mB = 1.00 kg and 33.0,...Ch. 4 - The masses mA and mB slide on the smooth...Ch. 4 - A 75.0-kg person stands on a scale in an elevator....Ch. 4 - A city planner is working on the redesign of a...Ch. 4 - If a bicyclist of mass 65 kg (including the...Ch. 4 - A bicyclist can coast down a 5.0 hill at a...Ch. 4 - Francesca dangles her watch from a thin piece of...Ch. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - In the design of a supermarket, there are to be...Ch. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - A 7650-kg helicopter accelerates upward at 0.80...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - An elevator in a tall building is allowed to reach...Ch. 4 - Two rock climbers, Bill and Karen, use safety...Ch. 4 - Three mountain climbers who are roped together in...Ch. 4 - A doomsday asteroid with a mass of 1.0 1010kg is...Ch. 4 - A 450-kg piano is being unloaded from a truck by...Ch. 4 - Consider the system shown in Fig. 462 with mA =...Ch. 4 - A 1.5-kg block rests on top of a 7.5-kg block...Ch. 4 - You are driving home in your 750-kg car at 15 m/s....Ch. 4 - (II) A large crate of mass 1500 kg starts sliding...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. Size and Life
Physicists look for simple models and general principles that underlie and explain diverse phy...
College Physics: A Strategic Approach (3rd Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Complete and balance each equation. If no reaction occurs, write NO REACTION. a. KI(aq)+BaS(aq) b. K2SO4(aq)+Ba...
Introductory Chemistry (6th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
WRITE ABOUT A THEME: ORGANIZATION Cells arc the basic units of structure and function in all organisms. A key f...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force (in N) for the last 20 m for the empty test car. Write AK + AU + AE int = W+Q + TMW + TMT + TET + TER for the car-track-Earth system and solve for…arrow_forward= 12 kg, and m3 Three objects with masses m₁ = 3.8 kg, m₂ find the speed of m3 after it moves down 4.0 m. m/s 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to m m2 m3 iarrow_forwardThree objects with masses m₁ = 3.8 kg, m₂ = 12 kg, and m 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to find the speed of m¸ after it moves down 4.0 m. m/s m m2 mgarrow_forward
- In order for Jane to return to base camp, she needs to swing across a river of width D that is filled with alligators. She must swing into a wind exerting constant horizontal force F, F = 110 N, L = 40.0 m, 0 = 50.0°, and her mass to be 50.0 kg. Wind →F Tarzan! Jane (a) with what minimum speed (in m/s) must Jane begin her swing to just make it to the other side? (If Jane can make it across with zero initial velocity, enter 0.) m/s on a vine having length L and initially making an angle with the vertical (see below figure). Take D = 48.0 m, (b) Shortly after Jane's arrival, Tarzan and Jane decide to swing back across the river (simultaneously). With what minimum speed (in m/s) must they begin their swing? Assume that Tarzan has a mass of 80.0 kg. m/sarrow_forwardR=2.00 12V 2.00 4.00 4.002 What is the current in one of the 4.0 Q resistors? An isolated point charge q is located at point X. Two other points Y and Z are such that YZ2 XY. Y X What is (electric field at Y)/(electric field at Z)?arrow_forwardTwo objects (m₁ = 4.75 kg and m₂ 2.80 kg) are connected by a light string passing over a light, frictionless pulley as in the figure below. The 4.75-kg object is released from rest at a point h = 4.00 m above the table mg m (a) Determine the speed of each object when the two pass each other. m/s (b) Determine the speed of each object at the moment the 4.75-kg object hits the table. m/s (c) How much higher does the 2.80-kg object travel after the 4.75-kg object hits the table? marrow_forward
- A cell of negligible internal resistance is connected to three identical resistors. The current in the cell is 3.0 A. The resistors are now arranged in series. What is the new current in the cell?arrow_forwardA negatively charged sphere is falling through a magnetic field. north pole of magnet direction of motion south pole of magnet What is the direction of the magnetic force acting on the sphere?arrow_forwardElectrons in a conductor are moving down the page. A proton outside the wire is moving to the right. What is the direction of the magnetic force acting on the proton?arrow_forward
- What is the resistance of an ideal voltmeter and the resistance of an ideal ammeter? Resistance of an ideal voltmeter Resistance of an ideal ammeter infinite A. zero B. zero zero C. infinite infinite D. infinite zeroarrow_forwardvariable resistor with a resistance range of 0 to 6.0 KQ is connected in series with two resistors of fixed value 6.0 KQ. The cell in the circuit has an emf of 18 V and a negligible internal resistance. 18 V X Y 6.0 ΚΩ 6.0 ΚΩ 0 - 6.0 ΚΩ What is the maximum range of potential difference that can be observed between X and Y?arrow_forwardA positive point charge of magnitude 1.0 μC and a point charge q are separated by a distance d. electron 1.0 με An electron is placed at a distance d from the +1.0 μC charge. The electric force on the electron is zero. What is q?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY