Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 24Q
A bear sling, Fig. 4–30, in used in some national parks for placing backpackers’ food out of the reach of bears. Explain why the force needed to pull the backpack up increases as the backpack gets higher and higher. Is it possible to pull the rope hard enough so that it doesn’t sag at all?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please don't use Chatgpt will upvote and give handwritten solution
No chatgpt pls will upvote
The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along
its axis.
5.6 m.
4 m-
B
Part A
Determine the compressive force along leg AB.
Express your answer to three significant figures and include the appropriate units.
FAB =
Value
Submit
Request Answer
Part B
Units
?
Determine the compressive force along leg CB.
Express your answer to three significant figures and include the appropriate units.
FCB=
Value
Submit
Request Answer
Part C
?
Units
Determine the tension in the winch cable DB.
Express your answer with the appropriate units.
2m
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.5 - A massive truck collides head-on with a small...Ch. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.7 - A 10.0-kg box is dragged on a horizontal...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - If the acceleration of an object is zero, are no...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - Only one force acts on an object. Can the object...
Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Would a spring scale carried to the Moon give...Ch. 4 - You pull a box with a constant force across a...Ch. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - According to Newtons third law. each team in a tug...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A bear sling, Fig. 430, in used in some national...Ch. 4 - (I) What force is needed to accelerate a child on...Ch. 4 - (1) A net force of 265N accelerates a bike and...Ch. 4 - (I) What is the weight of a 68-kg astronaut (a) on...Ch. 4 - (I) How much tension must a rope withstand if it...Ch. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - (II) What average force is required to stop a...Ch. 4 - (II) Estimate the average force exerted by a...Ch. 4 - (II) A 0.140-kg baseball traveling 35.0 m/s...Ch. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) What average force is needed to accelerate a...Ch. 4 - (II) How much tension must a cable withstand if it...Ch. 4 - (II) A 14.0-kg bucket is lowered vertically by a...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - (II) A 75-kg petty thief wants to escape from a...Ch. 4 - (II) An elevator (mass 4850 kg) is to he designed...Ch. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - (II) A person stands on a bathroom scale in a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - (II) A rocket with a mass of 2.75 106 kg exerts a...Ch. 4 - (II) (a) What is the acceleration of two falling...Ch. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) The cable supporting a 2125-kg elevator has a...Ch. 4 - (III) The 100-m dash can be run by the best...Ch. 4 - (III) A person jumps from the roof of a house...Ch. 4 - (I) A box weighing 77.0 N rests on atable. A rope...Ch. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (II) Christian is making a Tyrolean traverse as...Ch. 4 - (II) A window washer pulls herself upward using...Ch. 4 - (II) One 3.2-kg paint bucket is hanging by a...Ch. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - (II) Two snowcats in Antarctica are towing a...Ch. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - (II) The two forces F1 and F2 shown in Fig. 4-40a...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 40PCh. 4 - (II) Uphill escape ramps are sometimes provided to...Ch. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - (II) A block is given an initial speed of 4.5 m/s...Ch. 4 - (II) An object is hanging by a string from your...Ch. 4 - (II) Figure 4-45 shows a block (mass mA) on a...Ch. 4 - (II) (a) If mA = 13.0 kg and mB = 5.0 kg in Fig....Ch. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Suppose two boxes on a frictionless table...Ch. 4 - (III) The two masses shown in Fig, 450 are each...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - (III) A particle of mass m, initially at rest at x...Ch. 4 - (III) A heavy steel cable of length and mass M...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - A 2.0-kg purse is dropped 58 m from the top of the...Ch. 4 - Toms hang glider supports his weight using the six...Ch. 4 - A wet bar of soap (m = 150 g) slides freely down a...Ch. 4 - A cranes trolley at point P in Fig. 4-53 moves for...Ch. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - (a) In Fig. 454, if mA = mB = 1.00 kg and 33.0,...Ch. 4 - The masses mA and mB slide on the smooth...Ch. 4 - A 75.0-kg person stands on a scale in an elevator....Ch. 4 - A city planner is working on the redesign of a...Ch. 4 - If a bicyclist of mass 65 kg (including the...Ch. 4 - A bicyclist can coast down a 5.0 hill at a...Ch. 4 - Francesca dangles her watch from a thin piece of...Ch. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - In the design of a supermarket, there are to be...Ch. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - A 7650-kg helicopter accelerates upward at 0.80...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - An elevator in a tall building is allowed to reach...Ch. 4 - Two rock climbers, Bill and Karen, use safety...Ch. 4 - Three mountain climbers who are roped together in...Ch. 4 - A doomsday asteroid with a mass of 1.0 1010kg is...Ch. 4 - A 450-kg piano is being unloaded from a truck by...Ch. 4 - Consider the system shown in Fig. 462 with mA =...Ch. 4 - A 1.5-kg block rests on top of a 7.5-kg block...Ch. 4 - You are driving home in your 750-kg car at 15 m/s....Ch. 4 - (II) A large crate of mass 1500 kg starts sliding...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
A wild-type fruit fly (heterozygous for gray body color and led eyes) is mated Willi a black fruit fly wltli pu...
Campbell Biology (11th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forward
- The members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forwardpls helparrow_forward
- pls helparrow_forward6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forward
- What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forwardՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY