A 30.0-kg child starting from rest slides down a water slide with a vertical height of 10.0 m. What is the child’s speed (a) halfway down the slide’s vertical distance and (b) three-fourths of the way down? (Neglect friction.)
(a)
Answer to Problem 20E
Explanation of Solution
Given info: The speed of the child having mass
Explanation:
Formula to calculate the speed of an object while coming from a height is,
Here,
Calculate the height at the halfway down the water slide.
Here,
Substitute
Calculate the change in height.
Substitute
Calculate the speed of the child using the formula of the speed of an object while coming from a height.
Substitute
Thus, the speed of the child while coming down the halfway down the slide in vertical distance is
Conclusion:
Therefore, thus, the speed of the child while coming down the halfway down the slide in vertical distance is
(b)
Answer to Problem 20E
Explanation of Solution
Given info: The speed of the child having mass
Explanation:
Formula to calculate the speed of an object while coming from a height is,
Here,
Calculate the height at the three fourth down the water slide.
Here,
Substitute
Calculate the change in height.
Substitute
Calculate the speed of the child using the formula of the speed of an object while coming from a height.
Substitute
Thus, the speed of the child while coming down the halfway down the slide in vertical distance is
Conclusion:
Therefore, thus, the speed of the child while coming down the halfway down the slide in vertical distance is
Want to see more full solutions like this?
Chapter 4 Solutions
An Introduction to Physical Science
- If the net work done by external forces on a particle is zero, which of the following statements about the particle must be true? (a) Its velocity is zero. (b) Its velocity is decreased. (c) Its velocity is unchanged. (d) Its speed is unchanged. (e) More information is needed.arrow_forwardAs shown in Figure P7.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point to point is 0.600 m, and point is 0.200 in higher than point . A constant friction force of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point , what is its speed at point ? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point , which bead reaches point first? Explain. Figure P7.20arrow_forwardA boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d. Figure P5.64arrow_forward
- A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardA 537-kg trailer is hitched to a truck. Find the work done by the truck on the trailer in each of the following cases. Assume rolling friction is negligible. a. The trailer is pulled at constant speed along a level road for 2.30 km. b. The trailer is accelerated from rest to a speed of 88.8 km/h. c. The trailer is pulled at constant speed along a road inclined at 12.5 for 2.30 km.arrow_forwardAs a young man, Tarzan climbed up a vine to reach his tree house. As he got older, he decided to build and use a staircase instead. Since the work of the gravitational force mg is path Independent, what did the King of the Apes gain in using stairs?arrow_forward
- A sled of mass 70 kg starts from rest and slides down a 10 incline 80 m long. It then travels for 20 m horizontally before starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the magnitude of the net work done on the sled by friction?arrow_forwardThe force acting on a particle varies as shown in Figure P6.14. Find the work done by the force on the particle as it moves (a) from x = 0 to x = 8.00 m, (b) from x = 8.00 m to x= 10.0 m, and (c) from x = 0 to x = 10.0 m.arrow_forwardRepeat the preceding problem, but this time, suppose that the work done by air resistance cannot be ignored. Let the work done by the air resistance when the skier goes from A to B along the given hilly path be —2000 J. The work done by air resistance is negative since the air resistance acts in the opposite direction to the displacement. Supposing the mass of the skier is 50 kg, what is the speed of the skier at point B ?arrow_forward
- What average power is generated by a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forwardA block of mass 0.500 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x (Fig. P7.79). The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point , the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The blocks speed at the bottom of the track is = 12.0 m/s, and the block experiences an average friction force of 7.00 N while sliding up the track. (a) What is x? (b) If the block were to reach the top of the track, what would be its speed at that point? (c) Does the block actually reach the top of the track, or does it fall off before reaching the top?arrow_forwardReview. A bead slides without friction around a loop-the-loop (Fig. P7.3). The bead is released from rest at a height h = 3.50R. (a) What is its speed at point ? (b) How large is the normal force on the bead at point if its mass is 5.00 g? Figure P7.3arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning