
To analyze:
The ratio of purine to pyrimidine for the given set of deoxyribonucleic acid (DNA), observation of a pattern, and the relation of this pattern to the DNA structure.
Given:
The composition of DNA is different in different organisms. The composition of DNA bases in some organisms is tabulated as follows in Table 1:
Table 1: The composition of DNA bases in some organisms
Organism and the tissue from which DNA is extracted | The composition of DNA base (%) | |||
Adenine | Guanine | Cytosine | Thymine | |
Herring sperm | 27.8 | 22.2 | 22.6 | 27.5 |
Rat bone marrow | 28.6 | 21.4 | 21.5 | 28.4 |
Human sperm | 30.7 | 19.3 | 18.8 | 31.2 |
Escherichia coli | 26.0 | 24.9 | 25.2 | 23.9 |
Yeast | 31.3 | 18.7 | 17.1 | 32.9 |
Introduction:
Purines are the heterocyclic compounds, which contain carbon, hydrogen, and nitrogen atoms. They contain a double ring system. Pyrimidine is also heterocyclic compounds, but they contain a single ring. The concentration of both purines and pyrimidine are important to define the genetic code of an individual. The DNA consist of two types of purines, that are, guanine (G) and adenine (A) (remember ‘i’ in purine, adenine, and guanine), and two types of pyrimidine, that are, thymine (T) and cytosine (C) (remember ‘y’ in cytosine, thymine, and pyrimidine).

Explanation of Solution
Each purine is bonded to a pyrimidine with the help of hydrogen bonds. The adenine is bonded to thymine by two hydrogen bonds and cytosine is bonded to guanine by three hydrogen bonds. The rule of bonding of a pyrimidine with a purine is called as the Chargaff’s rule. The number of purines is always equal to the number of pyrimidines.
The ratio of purine to pyrimidine is calculated by dividing the total amount of purine with the total amount of pyrimidines and it can be seen in Table 2 given below:
Table 2: Ratio of purine to pyrimidine
Organism and the tissue from which DNA is extracted | Purines | Pyrimidines | Ratio | ||
A+G | C+T | ||||
Herring sperm pyrimidines ratio | |||||
Rat bone marrow | |||||
Human sperm | |||||
Escherichia coli | |||||
Yeast |
From Table 2, it is clear that the ratio of purine to pyrimidine is always equal to 1. This means that the DNA always occurs as a double helix structure in which one purine is always bonded to one pyrimidine.
Thus, it can be calculated from Tables 1 and 2 that each organism has a different composition of DNA bases but the ratio of purines to pyrimidine is always equal to 1 indicating that DNA is a double helix structure, in which each purine is hydrogen bonded to a pyrimidine.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK LIFE: THE SCIENCE OF BIOLOGY
- If using animals in medical experiments could save human lives, is it ethical to do so? In your answer, apply at least one ethical theory in support of your position.arrow_forwardYou aim to test the hypothesis that the Tbx4 and Tbx5 genes inhibit each other's expression during limb development. With access to chicken embryos and viruses capable of overexpressing Tbx4 and Tbx5, describe an experiment to investigate whether these genes suppress each other's expression in the limb buds. What results would you expect if they do repress each other? What results would you expect if they do not repress each other?arrow_forwardYou decide to delete Fgf4 and Fgf8 specifically in the limb bud. Explain why you would not knock out these genes in the entire embryo instead.arrow_forward
- You implant an FGF10-coated bead into the anterior flank of a chicken embryo, directly below the level of the wing bud. What is the phenotype of the resulting ectopic limb? Briefly describe the expected expression domains of 1) Shh, 2) Tbx4, and 3) Tbx5 in the resulting ectopic limb bud.arrow_forwardDesign a grafting experiment to determine if limb mesoderm determines forelimb / hindlimb identity. Include the experiment, a control, and an interpretation in your answer.arrow_forwardThe Snapdragon is a popular garden flower that comes in a variety of colours, including red, yellow, and orange. The genotypes and associated phenotypes for some of these flowers are as follows: aabb: yellow AABB, AABb, AaBb, and AaBB: red AAbb and Aabb: orange aaBB: yellow aaBb: ? Based on this information, what would the phenotype of a Snapdragon with the genotype aaBb be and why? Question 21 options: orange because A is epistatic to B yellow because A is epistatic to B red because B is epistatic to A orange because B is epistatic to A red because A is epistatic to B yellow because B is epistatic to Aarrow_forward
- A sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardA sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardWith reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forward
- With reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning




