
Electric Circuits, Global Edition
10th Edition
ISBN: 9781292060545
Author: James W. Nilsson, Susan Riedel
Publisher: Pearson Education Limited
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 19P
(a)
To determine
Calculate the total power developed in the given circuit using node-voltage method in PSPICE.
(b)
To determine
Calculate the total power absorbed in the circuit using PSPICE.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
How do we know that D1 is forward bias and D2 is reverse biased?
Solve it in a different way than the previous solution that I searched for
A lossless uncharged transmission line of length L = 0.45 cm has a characteristic impedance of 60 ohms. It is driven by an ideal voltage generator producing a pulse of amplitude 10V and width 2 nS. If the transmission line is connected to a load of 200 ohms, sketch the voltage at the load as a function of time for the interval 0 < t < 20 nS. You may assume that the propagation velocity of the transmission is c/2. Answered now answer number 2.
Repeat Q.1 but now assume the width of the pulse produced by the generator is 4 nS. Sketch the voltage at the load as a function of time for 0 < t < 20 nS.
Chapter 4 Solutions
Electric Circuits, Global Edition
Ch. 4.2 - a) For the circuit shown, use the node-voltage...Ch. 4.2 - Use the node-voltage method to find v in the...Ch. 4.3 - Use the node-voltage method to find the power...Ch. 4.4 - Use the node-voltage method to find vo in the...Ch. 4.4 - Use the node-voltage method to find v in the...Ch. 4.4 - Use the node-voltage method to find v1 in the...Ch. 4.5 - Use the mesh-current method to find (a) the power...Ch. 4.6 - Determine the number of mesh-current equations...Ch. 4.6 - Use the mesh-current method to find vo in the...Ch. 4.7 - Use the mesh-current method to find the power...
Ch. 4.7 - Use the mesh-current method to find the mesh...Ch. 4.7 - Use the mesh-current method to find the power...Ch. 4.8 - Find the power delivered by the 2 A current source...Ch. 4.8 - Find the power delivered by the 4 A current source...Ch. 4.9 - Use a series of source transformations to find the...Ch. 4.10 - Find the Thévenin equivalent circuit with respect...Ch. 4.10 - Prob. 17APCh. 4.10 - Prob. 18APCh. 4.11 - Find the Thévenin equivalent circuit with respect...Ch. 4.11 - Find the Thévenin equivalent circuit with respect...Ch. 4.12 - Find the value of R that enables the circuit shown...Ch. 4.12 - Assume that the circuit in Assessment Problem 4.21...Ch. 4 - For the circuit shown in Fig. P4.1, state the...Ch. 4 - If only the essential nodes and branches are...Ch. 4 - Assume the voltage vs in the circuit in Fig. P4.3...Ch. 4 - A current leaving a node is defined as...Ch. 4 - How many separate parts does the circuit in Fig....Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Find the power developed by the 40 mA current...Ch. 4 - A 50 Ω resistor is connected in series with the 40...Ch. 4 - Use the node-voltage method to find how much power...Ch. 4 - Use the node-voltage method to show that the...Ch. 4 - Use the node-voltage method to find the branch...Ch. 4 - Use the node-voltage method to find v1 and v2 in...Ch. 4 - Use the node-voltage method to find v1 and v2 in...Ch. 4 - Use the node-voltage method to find v1, v2, and v3...Ch. 4 - The circuit shown in Fig. P4.14 is a dc model of a...Ch. 4 - Use the node-voltage method to find the total...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Use the node-voltage method to calculate the power...Ch. 4 - Use the node-voltage method to find the total...Ch. 4 - Use the node voltage method to find vo for the...Ch. 4 - Find the node voltages v1, v2, and v3 in the...Ch. 4 - Use the node-voltage method to find υ0 and the...Ch. 4 - Use the node-voltage method to find the value of...Ch. 4 - Use the node-voltage method to find io in the...Ch. 4 - Use the node-voltage method to find the power...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Use the node-voltage method to find the branch...Ch. 4 - Use the node-voltage method to find the value of...Ch. 4 - Assume you are a project engineer and one of your...Ch. 4 - Use the node-voltage method to find the power...Ch. 4 - Show that when Eqs. 4.13, 4.14, and 4.16 are...Ch. 4 - Use the mesh-current method to find the branch...Ch. 4 - Solve Problem 4.11 using the mesh-current...Ch. 4 - Solve Problem 4.14 using the mesh-current...Ch. 4 - Solve Problem 4.26 using the mesh-current...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Solve Problem 4.25 using the mesh-current...Ch. 4 - Solve Problem 4.17 using the mesh-current...Ch. 4 - Use the mesh-current method to find the power...Ch. 4 - Use the mesh-current method to find the power...Ch. 4 - Use the mesh-current method to find υ0 in the...Ch. 4 - Use mesh-current method to find the power...Ch. 4 -
Use the mesh-current method to solve for iΔ in...Ch. 4 - Solve Problem 4.10 using the mesh-current...Ch. 4 - Solve Problem 4.21 using the mesh-current...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Use the mesh-current method to find how much power...Ch. 4 - Use the mesh-current method to determine which...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Prob. 50PCh. 4 - Solve Problem 4.23 using the mesh-current...Ch. 4 - Use the mesh-current method to find the branch...Ch. 4 - Find the branch currents ia − ie for the circuit...Ch. 4 - Assume you have been asked to find the power...Ch. 4 - A 4 kΩ resistor is placed in parallel with the 10...Ch. 4 - Would you use the node-voltage or mesh- current...Ch. 4 - Prob. 57PCh. 4 - The variable de voltage source in the circuit in...Ch. 4 - Make a series of source transformations to find...Ch. 4 - Prob. 60PCh. 4 - Use source transformations to find the current io...Ch. 4 - Use a series of source transformations to find i0...Ch. 4 - Use source transformations to find vo in the...Ch. 4 - Prob. 64PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Prob. 66PCh. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Prob. 68PCh. 4 - A Thévenin equivalent can also be determined from...Ch. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - The Wheatstone bridge in the circuit shown in Fig....Ch. 4 - Prob. 74PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Prob. 80PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - The variable resistor in the circuit in Fig. P4.82...Ch. 4 - Prob. 83PCh. 4 - a) Calculate the power delivered for each value of...Ch. 4 - Find the value of the variable resistor Ro in the...Ch. 4 - A variable resistor R0 is connected across the...Ch. 4 - The variable resistor (R0) in the circuit in Fig....Ch. 4 - The variable resistor in the circuit in Fig. P4.91...Ch. 4 - The variable resistor (RL) in the circuit in Fig....Ch. 4 - The variable resistor (RO) in the circuit in Fig....Ch. 4 - In the circuit in Fig. P4.92, before the 5 mA...Ch. 4 - Use the principle of superposition to find the...Ch. 4 -
Use superposition to solve for and υ0 in the...Ch. 4 - Prob. 95PCh. 4 - Use the principle of superposition to find the...Ch. 4 - Prob. 97PCh. 4 - Use the principle of superposition to find the...Ch. 4 - Assume your supervisor has asked you to determine...Ch. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Laboratory measurements or a dc voltage source...Ch. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Repeat Problem 4.105 if Ig2 increases to 17 A and...Ch. 4 - Prob. 107PCh. 4 - Use the results given in Table 4.2 to predict the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve this experiment with an accurate solution, please. Thank you.arrow_forwardA lossless uncharged transmission line of characteristic impedance Zo = 600 and length T = 1us is connected to a 180 load. If this transmission line is connected at t = 0 to a 90 V dc source with an internal resistance of 900, from a bounce diagram of this system sketch (a) the voltage at z=0, z=L, and z = L/2 for up to 7.25μs and (b) calculate the load voltage after an infinite amount of time.arrow_forwardA lossless uncharged transmission line of length L = 0.45 cm has a characteristic impedance of 60 ohms. It is driven by an ideal voltage generator producing a pulse of amplitude 10V and width 2 nS. If the transmission line is connected to a load of 200 ohms, sketch the voltage at the load as a function of time for the interval 0 < t < 20 nS. You may assume that the propagation velocity of the transmission is c/2.arrow_forward
- The VSWR (Voltage Standing Wave Ratio) is measured to be 2 on a transmission line. Find two values of the reflection coefficient with one corresponding to Z > Zo and the other to Zarrow_forwardA dc voltage of unknown value Vand internal resistance Reis connected through a switch to a lossless transmission line of Zo = 1000. If the first 5 μS of the voltages at z = 0 and z = L are observed to be as shown below, calculate Vo, RG, the load resistanceR,, and the transit time T. 100 + [V]:-0. V 90 [V]:-V 100 75 I, Տ 1,μs 2 4 6 0 2 4 6arrow_forwardA lossless open circuited transmission line behaves as an equivalent capacitance of Ceq = Tan (BL) Show for BL << 1 that Ceq = C'L where L is the length of the transmission line and wZo C' is the lumped parameter capacitance per unit length of the transmission line. Hint: For x small, Tan(x) = x.arrow_forward= A generator with VG 300V and R = 50 is connected to a load R = 750 through a 50 lossless transmission line of length L = 0.15 m. (a) Compute Zin, the input impedance of the line at the generator end. (b) Compute and V. (c) Compute the time-average power Pin delivered to the line. (d) Compute VL, IL, and the time-average power delivered to the load, PL (e) How does Pin compare to PL? Explain.arrow_forwardFor the regulated power supply circuit, assume regular diodes with 0.7V forward drop. Use a 15V (peak), 60Hz sine wave at the transformer secondary and assume a maximum ripple level of 1V. (a) Compute the unknown components needed to design 10V DC supply.Hint: find R first, and then C. What is the ripple level for C=22µF?Sketch the rectified, filtered, and regulated outputsarrow_forwardA) Find the solution of B) Find the convolution of Sewt (t-π)dt 8 e-atu(t)e-blu(t)arrow_forwardConsider the signal: f(t)= 0, ㅠ 1 Use the Fourier transform formula to find F(w). otherwisearrow_forwardA half-wave controlled rectifier is supplied by a 230 Vrms voltage source and has load resistance of 2502. Calculate the delay angle a that produces a load-absorbed power of 200W.arrow_forwardQ6 The FET shown in Fig. 1.43 has gm = 3.4 mS and rd =100 K. Find the approximate lower cutoff frequency. Ans: 735.1 Hz. 25V 1.5ΜΩ 20 ΚΩ 0.02µF HH 2ΚΩ 0.02µF HH 330kQ 820 ΩΣ 1.0µF www 40ΚΩarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Nodal Analysis for Circuits Explained; Author: Engineer4Free;https://www.youtube.com/watch?v=f-sbANgw4fo;License: Standard Youtube License