Heat and Mass Transfer: Fundamentals and Applications
6th Edition
ISBN: 9781260440058
Author: CENGEL, Yunus
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 166P
To determine
Time taken by casting to cool to its 90% of original temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q3/Condensing steam at 1 atm is used to maintain a vertical plate 20 cm high and 3.0 m wide at a
constant temperature of 100°C. The plate is exposed to room air at 20°C. What flow rate of air will
result from this heating process? What is the total heating supplied to the room air?
Ans. 0.0034 kg/s, 278W
Determine the quantity (volume) of saline water in a steam generator. The heat energy of 1592 kJ is supplied to saline water in the steam generator to heat from 26ºC to 119ºC for the generation of water vapor, Take the density & specific heat of the solution as 1030 kg/m3 & 3.2 J/kgºK respectively.
Solution:
Change in Temperature (in K)
Answer for part 1
Mass of the saltwater (in kg)Answer for part 2
Quantity (Volume) of saltwater (in m3)
Answer for part 3
Show how to solve the heat transfer analysis and show formulas to be used in Evaporation cooling in cooling towers.
Subject : Heat Transfer
Chapter 4 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 4 - What is the physical significance of the Biot...Ch. 4 - What is lumped system analysis? When is it...Ch. 4 - In what medium is the lumped system analysis more...Ch. 4 - For which solid is the lumped system analysis more...Ch. 4 - For which kinds of bodies made of the same...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider a hot baked potato on a plate. The...Ch. 4 - Consider a potato being baked in an oven that is...Ch. 4 - Consider two identical 4-kg pieces of roast beef....
Ch. 4 - Consider a sphere and a cylinder of equal volume...Ch. 4 - Obtain relations for the characteristic lengths of...Ch. 4 - Obtain a relation for the time required for a...Ch. 4 - A brick of 20310257mm in dimension is being burned...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Metal plates...Ch. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - A 6-mm-thick stainless steel strip...Ch. 4 - After heat treatment, the 2-cm-thick metal plates...Ch. 4 - A long copper rod of diameter 2.0 cm is initially...Ch. 4 - Prob. 25PCh. 4 - Steel rods...Ch. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - To warm up some milk for a baby, a mother pours...Ch. 4 - A person is found dead at 5 p.m. in a room whose...Ch. 4 - Prob. 31PCh. 4 - In an experiment, the temperature of a hot gas...Ch. 4 - Prob. 33PCh. 4 - Pulverized coal particles are used in oxy-fuel...Ch. 4 - Oxy-fuel combustion power plants use pulverized...Ch. 4 - Plasma spraying is a process used for coating a...Ch. 4 - Consider a spherical shell satellite with outer...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40EPCh. 4 - Consider a sphere of diameter 5 cm, a cube of side...Ch. 4 - Prob. 42PCh. 4 - An egg is to be cooked to a certain level of...Ch. 4 - What is an infinitely long cylinder? When is it...Ch. 4 - What is the physical significance of the Fourier...Ch. 4 - Prob. 46CPCh. 4 - Prob. 47CPCh. 4 - The Biot number during a heat transfer process...Ch. 4 - A body at an initial temperature of Ti, is brought...Ch. 4 - Prob. 50PCh. 4 - In a meat processing plant, 2-cm-thick steaks...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Layers of 23-cm-thick meat slabs...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62EPCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - A 30-cm-diameter, 4-m-high cylindrical column of a...Ch. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - For heat transfer purposes, an egg can be...Ch. 4 - Citrus fruits are very susceptible to cold...Ch. 4 - Chickens with an average mass of 1.7 kg...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Oranges of 2.5-in-diameter...Ch. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - A 9-cm-diameter potato...Ch. 4 - In Betty Crocker s Cookbook, it is stated that it...Ch. 4 - Prob. 84PCh. 4 - Under what conditions can a plane wall be treated...Ch. 4 - What is a semi-infinite medium? Give examples of...Ch. 4 - Consider a hot semi-infinite solid at an initial...Ch. 4 - Prob. 88EPCh. 4 - Prob. 89PCh. 4 - In areas where the air temperature remains below...Ch. 4 - Prob. 91PCh. 4 - A highway made of asphalt is initially at a...Ch. 4 - A thick aluminum block initially at 20C is...Ch. 4 - Prob. 94PCh. 4 - A thick wall made of refractory bricks...Ch. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - A thick wood slab (k=0.17W/m.K,=1.2810-7m2/s) and...Ch. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - A barefooted person whose feet are at 32C steps on...Ch. 4 - What is the product solution method? How is it...Ch. 4 - How is the product solution used to determine the...Ch. 4 - Prob. 109CPCh. 4 - Consider a short cylinder whose top and bottom...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - A hot dog can be considered to be a cylinder 5 in...Ch. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - A 2-cm-high cylindrical ice block...Ch. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124CPCh. 4 - How does refrigeration prevent or delay the...Ch. 4 - What are the environmental factors that affect the...Ch. 4 - What is the effect of cooking on the...Ch. 4 - Prob. 128CPCh. 4 - Prob. 129CPCh. 4 - Prob. 130CPCh. 4 - Prob. 131CPCh. 4 - How does the rate of freezing affect the...Ch. 4 - Prob. 133CPCh. 4 - Prob. 134CPCh. 4 - Prob. 135CPCh. 4 - Prob. 136CPCh. 4 - Prob. 137CPCh. 4 - Prob. 138PCh. 4 - Chickens with an average mass of 2.2 kg and...Ch. 4 - Prob. 140EPCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - During a picnic on a hot summer day, the only...Ch. 4 - Two metal rods are being heated in an oven with...Ch. 4 - Stainless steel ball bearings...Ch. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - In Betty crockers Cookbook, it is stated that it...Ch. 4 - A watermelon initially at 35C is to be cooled by...Ch. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - Prob. 159PCh. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 163PCh. 4 - Lumped system analysis of transient heat...Ch. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - An 18-cm-long, 16-cm-wide, and 12-cm-high hot iron...Ch. 4 - Prob. 168PCh. 4 - Prob. 169PCh. 4 - Prob. 170PCh. 4 - Prob. 171PCh. 4 - Prob. 172PCh. 4 - A long 18-cm-diameter bar made of hardwood...Ch. 4 - Consider a 7.6-cm-long and 3-cm-diameter...Ch. 4 - Consider a 7.6-cm-diameter cylindrical lamb meat...Ch. 4 - Prob. 176PCh. 4 - A small chicken (k=0.45W/m.K,=0.1510-6m2/s) and...Ch. 4 - A potato may be approximated as a 5.7-cm-diameter...Ch. 4 - When water, as in a pond or lake, is heated by...Ch. 4 - A large chunk of tissue at 35C with a thermal...Ch. 4 - Prob. 181PCh. 4 - Citrus trees are very susceptible to cold weather,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 8.2 From its definition and from the property values in Appendix 2, Table 13, calculate the coefficient of thermal expansion, , for saturated water at 403 K. Then compare your results with the value in the table.arrow_forwardi need the answer quicklyarrow_forwardHEAT TRANSFER,PLEASE GIVE COMPLETE WORKING Hot air at 80ºC enters an 8-m-long pipe at a rate of 0.15 kg/s. The pipe is considered as thin wall with diameter of 20 cm. The wall of the pipe is observed to be nearly at isothermal at 60ºC. The fluid properties of the hot air is as given on Table 1. Determine: The temperature of the air at the exit of the pipe. The heat loss from the hot air. Table 1: Thermo-physical properties for hot air k = 0.02953 W/m·K µ = 20.96×10-6 N·s/m2 Pr = 0.7154 cp = 1008 J/kg·Karrow_forward
- I need the answer as soon as possiblearrow_forwardPlease do not give solution in image formate thanku. What is adiabatic cooling? Is it predictable? Under what circumstances might you observe adiabatic temperature changes? Explain.arrow_forwardDetermine the quantity (volume) of saline water in a steam generator. The heat energy of 1738 kJ is supplied to saline water in the steam generator to heat from 26ºC to 111ºC for the generation of water vapor, Take the density & specific heat of the solution as 1031 kg/m3 & 3.6 J/kgºK respectively. Solution: Change in Temperature (in K) Answer for part 1 Mass of the saltwater (in kg) Answer for part 2 Quantity (Volume) of saltwater (in m3) Answer for part 3arrow_forward
- Awnserarrow_forward43% uo 7:52 * ZAIN IQ I. sheet No.3.pdf Homework 01-03 -2021 one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall. Q4/ Steam at Te1-320°C flows in a cast iron pipe (k=80W/m.°C) whose inner and outer diameters are D =5cm, and D=5.5cm, respectively. The pipe is covered with 3 cm thick glass wool insulation with k=0.05W/m.°C. Heat is lost to the surroundings at T02=5°C_by natural convection and radiation, with a combined heat transfer coefficient to be h,=18W/m.C. Taking the heat transfer coefficient inside the pipe to be h,=60W/m.C, determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation. 05/ Determine the overall heat transfer coefficient U based on the outer surface of a D=2.5cm, and D=3.34 cm steel pipe (k=54.0W/m.°C) for the following conditions: inside and outside heat transfer coefficients are 1200W/m."C. and 2000W/m."C…arrow_forwardEXAMPLE 7-2 Cooling of a Hot Block by Forced Air at High Elevation The local atmospheric pressure in Denver, Colorado (elevation 1610 m), is 83.4 kPa. Air at this pressure and 20°C flows with a velocity of 8 m/s over a 1.5 mx 6 m flat plate whose temperature is 140°C (Fig. 7-13). Determine the rate of heat transfer from the plate if the air flows parallel to the (a) 6-m-long side and (b) the 1.5-m side.arrow_forward
- Consider a tank with surface area A.(m2) It containsa fluid of M(kg) at an initial temperature of T0. (C) The specific heat of the fluid is Cp. (J/kg) The fluid inside the tank is heated with condensing vapour outside at temperature of Ts. find the equation that gives the change of the temperature of the fluid in the tank with time.T=f(t) neglect donduction heat transfer h=heat transfer film coef. homogenous T through the tankarrow_forwardThe defroster of an automobile functions by discharging warm air on the inner surface of the windshield. To prevent condensation of water vapor on the surface, the temperature of the air and the surface convection coefficient (T¡,¡ ) must be large enough to maintain a surface temperature T, that is at least as high as the dewpoint (Ts,i ≥ Tdp). Step 1 00,0¹ kg 8 - 0 Consider a windshield of length L = 800 mm and thickness t = 6 mm and driving conditions for which the vehicle moves at a velocity of V = 70 mph in ambient air at T%0,0 = 0°C. From laboratory experiments performed on a model of the vehicle, the average convection coefficient on the outer surface of the windshield is known to be correlated by an expression of the form 1/3 Nu₁ = 0.037 Re8 Pr¹/³, where Re₁ = VL/v. Air properties may be approximated as k = 0.023 W/m·K, v = 12.5 × 10-6 m²/s, and Pr = 0.71. If Tdp = = 10°C and Ti 50°C, what is the smallest value of the inside convection coefficient required to prevent…arrow_forwardHeat Transfer (Third year) 2020- 2021 Homework 01-03-2021 By Dr. Basil Noori Merzah one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall. Q4/ Steam at T01-320°C flows in a cast iron pipe (k=80W/m. C) whose inner and outer diameters are D,=5cm, and D,-5.5cm, respectively. The pipe is covered with 3 cm thick glass wool insulation with k=0.05W/m. C. Heat is lost to the surroundings at T2-5°C by natural convection and radiation, with a combined heat transfer coefficient to be h,=18W/m."C. Taking the heat transfer coefficient inside the pipe to be 2 0 h,-60W/m. C, determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation. Q5/ Determine the overall heat transfer coefficient U based on the outer surface of a D=2.5cm, and D =3.34 cm steel pipe (k=54.0W/m. C) for the following conditions: inside and outside heat transfer coefficients are…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license