College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 12PE
Repeat the previous problem for the situation in which the rocket sled decelerates at a rate of 201 m/s2. In this problem, the forces are exerted by the seat and restraining belts.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A lump of clay of mass 0.28 kg is dropped from a height of 10.8 m. The clay comes to a full stop 0.075 s after the moment it first touched the ground. What is the magnitude in newtons of the average force of impact that the clay experienced? Express your answer in two decimal places, with units of Newtons.
A semi is traveling down the highway at a velocity of v = 39.5 m/s. The driver observes a wreck ahead, locks his brakes, and begins to slide. The truck has mass m and a coefficient of kinetic friction between the tires and the road of μk = 0.25.
Write an expression for the sum of the forces in the x-direction for the truck while braking.
Using the results from that input an expression for the trucks acceleration, ax, while braking.
What is the magnitude of the acceleration in m/s^2, and how far does the truck travel, d in meters, before stopping?
Do show full solution. Thank you.
Chapter 4 Solutions
College Physics
Ch. 4 - Propose a force standard different from the...Ch. 4 - What properties do forces have that allow us to...Ch. 4 - How are inertia and mass related?Ch. 4 - What is the relationship between weight and mass?...Ch. 4 - Which statement is correct? (a) Net force causes...Ch. 4 - Why can we neglect forces such as those holding a...Ch. 4 - Explain how the choice of the “Stem of interest”...Ch. 4 - Describe a situation in which the net external...Ch. 4 - A system can have a nonzero velocity while the net...Ch. 4 - A rock is thrown straight up. What is the net...
Ch. 4 - (a) Give an example of different net external...Ch. 4 - If the acceleration of a system is zero, are no...Ch. 4 - If a constant, nonzero force is applied to an...Ch. 4 - The gravitational force on the basketball in...Ch. 4 - When you take off in a jet aircraft, there is a...Ch. 4 - A device used since the 1940s to measure the kick...Ch. 4 - Describe a Situation in which one a force on and,...Ch. 4 - Why does an ordinary rifle recoil (kick backward)...Ch. 4 - An American football lineman reasons that it is...Ch. 4 - Newton's third law of motion tells us that forces...Ch. 4 - If a leg is suspended by a traction setup as shown...Ch. 4 - Ina traction setup a broken bone, with pulleys and...Ch. 4 - To simulate the apparent weightlessness of space...Ch. 4 - A cartoon shows the toupee coming off the head of...Ch. 4 - Explain, in terms of the properties of the four...Ch. 4 - What is the dominant force between astronomical...Ch. 4 - Give a detailed example of the exchange of a...Ch. 4 - A 63.0-kg sprinter starts a race with an...Ch. 4 - If the sprinter from the previous problem...Ch. 4 - A cleaner pushes a 4.50-kg laundry cart in such a...Ch. 4 - Since astronauts in orbit are apparently...Ch. 4 - In Figure 4.7, the net external force on the 24-kg...Ch. 4 - The same rocket sled drawn in Figure 4.31 is...Ch. 4 - (a) If the rocket sled shown in Figure 4.32 starts...Ch. 4 - What is the deceleration of the rocket sled if it...Ch. 4 - Suppose two children push horizontally, but in...Ch. 4 - A powerful motorcycle can produce an acceleration...Ch. 4 - The rocket sled shown in Figure 4.33 accelerates...Ch. 4 - Repeat the previous problem for the situation in...Ch. 4 - The weight of an astronaut plus his space suit on...Ch. 4 - Suppose the mass of a fully loaded module in which...Ch. 4 - What net external force is exerted on a 1100-kg...Ch. 4 - A brave but inadequate rugby player is being...Ch. 4 - Two teams of nine members each engage in a tug of...Ch. 4 - What force does a trampoline have to apply to a...Ch. 4 - (a) Calculate the tension in a vertical strand of...Ch. 4 - Suppose a 60.0-kg gymnast climbs a rope. (a) What...Ch. 4 - Show that, as stated in the text, a force F...Ch. 4 - Consider the baby being weighed in Figure 4.34....Ch. 4 - A 5.00105 -kg rocket is accelerating straight up....Ch. 4 - The wheels of a midsize car exert a force of 2100...Ch. 4 - Calculate the force a 70.0-kg high jumper must...Ch. 4 - When landing after a spectacular somersault, a...Ch. 4 - A freight train consists of two 8.00104 -kg...Ch. 4 - Commercial airplanes are sometimes pushed out of...Ch. 4 - A 1100-kg car pulls a boat on a trailer. (a) What...Ch. 4 - (a) Find the magnitudes of the forces F1 and F2...Ch. 4 - Two children pull a third child on a snow saucer...Ch. 4 - Suppose your car was mired deeply in the mud and...Ch. 4 - What force is exerted on the tooth in Figure 4.38...Ch. 4 - Figure 4.39 shows Superhero and Trusty Sidekick...Ch. 4 - A nurse pushes a cart by exerting a force on the...Ch. 4 - Construct Your Own Problem Consider the tension in...Ch. 4 - Construct Your Own Problem Consider people pushing...Ch. 4 - Unreasonable Results (a) Repeat Exercise 4.29, but...Ch. 4 -
Ch. 4 - A flea jumps by exerting a force of 1.20105 N...Ch. 4 - Two muscles in the back of the leg pull upward on...Ch. 4 - A 76.0-kg person is being pulled away from a...Ch. 4 - Integrated Concepts A 35.0-kg dolphin decelerates...Ch. 4 - Integrated Concepts When starting a foot race, a...Ch. 4 - Integrated Concepts A large rocket has a mass of...Ch. 4 - Integrated Concepts A basketball player jumps...Ch. 4 - Integrated Concepts A 2.50-kg fireworks shell is...Ch. 4 - Integrated Concepts Repeat Exercise 4.47 for a...Ch. 4 - Integrated Concepts An elevator filled with...Ch. 4 - Unreasonable Results (a) What is the final...Ch. 4 - Unreasonable Results A 75.0-kg man stands on a...Ch. 4 - (a) What is the strength of the weak nuclear force...Ch. 4 - (a) What is the ratio of the strength of the...Ch. 4 - What is the ratio of the strength of the strong...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
3. Trails that are derived from a common ancestor, like the bones of human arms and bird wings, are said to be_...
Biological Science (6th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- This problem pertains to the scenario depicted in the diagram below, where the masses of the blocks are mi = 9.50 kg and m2 = 7.50 kg , and the angle of the ramp is 0 = 27.5°. There is no friction between block 2 and the ramp, but there is friction between block 1 and the flat surface it rests on. When the system is set in motion, both blocks move to the right at a constant speed. What is the coefficient of kinetic friction between block 1 and the flat surface (uk)? Show all steps, including drawing free body diagrams and applying Newton's 2nd law to each block. Problem 4 %3D sliding at constant speed m1 sliding at m2 constant friction no speed friction here herearrow_forwardA boy slides down a hill on a sled (total mass of 31 kg) and coasts onto a flat plain with a speed of 6.5 m/s. Friction between the sled and the snow exerts an average force of magnitude 38 N on the sled. How far (in m) does the sled travel before stopping? (Note: First, find the acceleration of the boy using Unit Two material, then use this to compute the distance using Unit One material.)arrow_forwardWhen installing a Red Carpet for the Oscars, workers found that if they push the carpet roll (image included) in the direction to unroll, it will keep unrolling by itself. However, if they push it to roll it up, it will move some distance and then stop. Why is this happening if the surface is flat and the friction is negligible? Calculate the distance the roll will move if it is initially given a push of velocity v0 =1 m/s to roll it up. The carpet is 1 in thick, 60 m long and half-rolled up prior to being pushed. (Hint: use energy conservation.)arrow_forward
- The rocket sled shown in the figure accelerates to the right at a rate of 68.6 m/s². Its passenger has a mass of 62 kg. Consider: The passenger pushes the back of the seat and the bottom of the seat. The resultant of the two forces is the net force of the passenger on the seat. Do they experience a reaction force from the seat? What force is responsible for his horizontal acceleration? (a) Calculate the horizontal component of the force F, the seat exerts against his body. F₁=ma= N (b) Compare this with his weight by using a ratio. F₁ W (c) Calculate the vertical component of the force N the seat exerts against his body. N= N (d) Calculate the direction and magnitude of the total force the seat exerts against his body. Give the angle as measured above the horizontal. 0= Fet= Submit Answer degrees N see other options - If you don't want to answer the question right now O Search Answering the question(s) helps us recommend your next activity. 99+ I Harrow_forwardA person with a black belt in karate has a fist that has a mass of 0.70 kg. Starting from rest, this fist attains a velocity of 6.3 m/s in 0.15 s. What is the magnitude of the average net force applied to the fist to achieve this level of performance?arrow_forwardJane, who has a mass of 81.0 kg, is riding at 15.0 m/s in his new car when she must suddenly slam on the brakes for the traffic light. She feels a pull on the seatbelt, and brings her body to a stop in 0.5 s. What average force does the seat belt exert on her?arrow_forward
- The figure shows a block (mass mAmA) on a smooth horizontal surface, connected by a thin cord that passes over a pulley to a second block (mass mBmB), which hangs vertically. Ignore friction and the masses of the pulley and cord. (Figure 1). a) Determine the acceleration of the system? b) Determine the tension in the cord?arrow_forwardYour forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can only withstand about 1.3 kN. If a 140g baseball strikes your head at 30 m/s and stops in 0.0015 seconds, what is the magnitude of the balls deceleration? Express your answer in meters per second squaredarrow_forwardIn a shuffleboard game, the puck slides a total of 12 m before coming to rest. If the coefficient of kinetic friction between the puck and board is 0.10, what was the initial speed of the puck? Can you point to some formula, why you chose that formula, then explain the factors in the physics dynamics. I don't quite understand.arrow_forward
- Answer both parts of the questionarrow_forwardThe block A with mass of 80 kg slides along the top of the block B with mass of 110 kg. The block A has an acceleration of 3.0 m/s2 when a horizontal force F of 700 N is applied, as in the Figure. There is no friction between the block B and a horizontal frictionless surface, but there is friction between the two blocks. Calculate the acceleration of the block A is going to B during the time that the block A remains in contact.arrow_forwardThe block A with mass of 80 kg slides along the top of the block B with mass of 110 kg. The block A has an acceleration of 3.0 m/s2 when a horizontal force F of 700 N is applied, as in the Figure. There is no friction between the block B and a horizontal frictionless surface, but there is friction between the two blocks. Calculate the acceleration of the block A is going to B during the time that the block A remains in contact. (Your result must be in units of m/s2, contain 2 digits after the decimal. Take g=9.81 m/s2. 3% of error will be tolerated in your answers.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License