College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 11PE
The rocket sled shown in Figure 4.33 accelerates at a rate of 49.0 m/s2. Its passenger has a mass of 75.0 kg. (a) Calculate the horizontal component of the force the seat exerts against his body. Compare this with his weight by using a ratio. (b) Calculate the direction and magnitude of the total force the seat exerts against his body.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A block of mass m =
6.0 kg is pulled up a 0 = 21° incline as in the figure below with a force of magnitude F = 38 N.
F
m
(a) Find the acceleration of the block if the incline is frictionless. (Give the magnitude of the acceleration.)
m/s?
(b) Find the acceleration of the block if the coefficient of kinetic friction between the block and incline is 0.11. (Give the magnitude of the acceleration.)
m/s²
A block of mass m = 5.7 kg is pulled up a θ = 22° incline as in the figure below with a force of magnitude F = 33 N.
Find the acceleration of the block if the incline is frictionless. (Give the magnitude of the acceleration.)
Find the acceleration of the block if the coefficient of kinetic friction between the block and incline is 0.12. (Give the magnitude of the acceleration.)
A block of mass M is suspended at rest by two strings attached to walls, as shown in the figure. The left string is horizontal with tension force T2 and and the right string with tension
force T1 makes an angle 0 with the horizontal. I1 is measured to be 63 N, and e = 41.0°. What is the mass of the block, in kg? Use g = 10 m/s2.
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it
is already given in the question statement.
M
Chapter 4 Solutions
College Physics
Ch. 4 - Propose a force standard different from the...Ch. 4 - What properties do forces have that allow us to...Ch. 4 - How are inertia and mass related?Ch. 4 - What is the relationship between weight and mass?...Ch. 4 - Which statement is correct? (a) Net force causes...Ch. 4 - Why can we neglect forces such as those holding a...Ch. 4 - Explain how the choice of the “Stem of interest”...Ch. 4 - Describe a situation in which the net external...Ch. 4 - A system can have a nonzero velocity while the net...Ch. 4 - A rock is thrown straight up. What is the net...
Ch. 4 - (a) Give an example of different net external...Ch. 4 - If the acceleration of a system is zero, are no...Ch. 4 - If a constant, nonzero force is applied to an...Ch. 4 - The gravitational force on the basketball in...Ch. 4 - When you take off in a jet aircraft, there is a...Ch. 4 - A device used since the 1940s to measure the kick...Ch. 4 - Describe a Situation in which one a force on and,...Ch. 4 - Why does an ordinary rifle recoil (kick backward)...Ch. 4 - An American football lineman reasons that it is...Ch. 4 - Newton's third law of motion tells us that forces...Ch. 4 - If a leg is suspended by a traction setup as shown...Ch. 4 - Ina traction setup a broken bone, with pulleys and...Ch. 4 - To simulate the apparent weightlessness of space...Ch. 4 - A cartoon shows the toupee coming off the head of...Ch. 4 - Explain, in terms of the properties of the four...Ch. 4 - What is the dominant force between astronomical...Ch. 4 - Give a detailed example of the exchange of a...Ch. 4 - A 63.0-kg sprinter starts a race with an...Ch. 4 - If the sprinter from the previous problem...Ch. 4 - A cleaner pushes a 4.50-kg laundry cart in such a...Ch. 4 - Since astronauts in orbit are apparently...Ch. 4 - In Figure 4.7, the net external force on the 24-kg...Ch. 4 - The same rocket sled drawn in Figure 4.31 is...Ch. 4 - (a) If the rocket sled shown in Figure 4.32 starts...Ch. 4 - What is the deceleration of the rocket sled if it...Ch. 4 - Suppose two children push horizontally, but in...Ch. 4 - A powerful motorcycle can produce an acceleration...Ch. 4 - The rocket sled shown in Figure 4.33 accelerates...Ch. 4 - Repeat the previous problem for the situation in...Ch. 4 - The weight of an astronaut plus his space suit on...Ch. 4 - Suppose the mass of a fully loaded module in which...Ch. 4 - What net external force is exerted on a 1100-kg...Ch. 4 - A brave but inadequate rugby player is being...Ch. 4 - Two teams of nine members each engage in a tug of...Ch. 4 - What force does a trampoline have to apply to a...Ch. 4 - (a) Calculate the tension in a vertical strand of...Ch. 4 - Suppose a 60.0-kg gymnast climbs a rope. (a) What...Ch. 4 - Show that, as stated in the text, a force F...Ch. 4 - Consider the baby being weighed in Figure 4.34....Ch. 4 - A 5.00105 -kg rocket is accelerating straight up....Ch. 4 - The wheels of a midsize car exert a force of 2100...Ch. 4 - Calculate the force a 70.0-kg high jumper must...Ch. 4 - When landing after a spectacular somersault, a...Ch. 4 - A freight train consists of two 8.00104 -kg...Ch. 4 - Commercial airplanes are sometimes pushed out of...Ch. 4 - A 1100-kg car pulls a boat on a trailer. (a) What...Ch. 4 - (a) Find the magnitudes of the forces F1 and F2...Ch. 4 - Two children pull a third child on a snow saucer...Ch. 4 - Suppose your car was mired deeply in the mud and...Ch. 4 - What force is exerted on the tooth in Figure 4.38...Ch. 4 - Figure 4.39 shows Superhero and Trusty Sidekick...Ch. 4 - A nurse pushes a cart by exerting a force on the...Ch. 4 - Construct Your Own Problem Consider the tension in...Ch. 4 - Construct Your Own Problem Consider people pushing...Ch. 4 - Unreasonable Results (a) Repeat Exercise 4.29, but...Ch. 4 -
Ch. 4 - A flea jumps by exerting a force of 1.20105 N...Ch. 4 - Two muscles in the back of the leg pull upward on...Ch. 4 - A 76.0-kg person is being pulled away from a...Ch. 4 - Integrated Concepts A 35.0-kg dolphin decelerates...Ch. 4 - Integrated Concepts When starting a foot race, a...Ch. 4 - Integrated Concepts A large rocket has a mass of...Ch. 4 - Integrated Concepts A basketball player jumps...Ch. 4 - Integrated Concepts A 2.50-kg fireworks shell is...Ch. 4 - Integrated Concepts Repeat Exercise 4.47 for a...Ch. 4 - Integrated Concepts An elevator filled with...Ch. 4 - Unreasonable Results (a) What is the final...Ch. 4 - Unreasonable Results A 75.0-kg man stands on a...Ch. 4 - (a) What is the strength of the weak nuclear force...Ch. 4 - (a) What is the ratio of the strength of the...Ch. 4 - What is the ratio of the strength of the strong...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A 1000 kg car pushes a 2000 kg truck that has a dead battery. When the driver steps on the accelerator, the ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A black widow spider hangs motionless from a web that extends vertically from the ceiling above. If the spider has a mass of 1.5 g, what is the tension in the web?arrow_forwardA block of mass M is suspended at rest by two strings attached to walls, as shown in the figure. The left string is horizontal with tension force T2 and and the right string with tension force T1 makes an angle θ with the horizontal. T1 is measured to be 47 N, and θ = 50.0°. What is the mass of the block, in kg? Use g = 10 m/s2. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forwardA contestant in a winter sporting event pulls an m kg block of ice across a frozen lake by applying a force F at an angle θ above the horizontal as shown. Assume that the coefficient of static friction for ice on ice is 0.0300, and the coefficient of kinetic friction for the same is 0.0100. Let to the right be the positive x direction and up be the positive y direction for your equations. Obtain a numeric value, in newtons, for the magnitude of the maximum applied force, F, consistent with static friction when the force makes an angle 22° above the horizontal and the mass of the block is 34 kg. Obtain a numeric value for the acceleration, a, in meters per squared seconds, when the mass of the block is 34 kg and the angle of the rope is 22° above the horizontal.arrow_forward
- A block of mass m = 5.7 kg is pulled up a e = 24° incline as in the figure below with a force of magnitude F = 36 N. m A block of mass m is positioned on an incline of angle e (measured counterclockwise from the horizontal). It is pulled up and right parallel to the incline by a force, vector F. O (a) Find the acceleration of the block if the incline is frictionless. (Give the magnitude of the acceleration.) m/s² (b) Find the acceleration of the block if the coefficient of kinetic friction between the block and incline is 0.12. (Give the magnitude of the acceleration.) m/s²arrow_forwardA block of mass m = 5.3 kg is pulled up a 8 = 24° incline as in the figure below with a force of magnitude F = 38 N. F m i (a) Find the acceleration of the block if the incline is frictionless. (Give the magnitude of the acceleration.) m/s² (b) Find the acceleration of the block if the coefficient of kinetic friction between the block and incline is 0.11. (Give the magnitude of the acceleration.) m/s²arrow_forwardA contestant in a winter sporting event pushes an mm kg block of ice across a frozen lake by applying a force FF at an angle θθ below the horizontal as shown. Assume that the coefficient of static friction for ice on ice is 0.0300, and the coefficient of kinetic friction for the same is 0.0100. Let to the right be the positive x direction and up be the positive y direction for your equations. Obtain a numeric value, in newtons, for the magnitude of the maximum applied force, F, consistent with static friction when the force makes an angle 32° below the horizontal and the mass of the block is 63 kg. Obtain a numeric value for the acceleration, a, in meters per squared seconds, when the mass of the block is 63 kg and the angle of the rope is 32° below the horizontal.arrow_forward
- At a post office, a parcel that is an m kg box slides down a ramp inclined at an angle θ with the horizontal, as shown. The coefficient of kinetic friction between the box and the ramp is μK, and the coefficient of static friction for the same is μS. Notice that the coordinate axes have been chosen with the x axis directed up the incline, as shown. 1. Enter a numeric answer for the magnitude of the acceleration in meters per squared seconds when the angle of the incline is 33° and the coefficient of kinetic friction is 0.075. 2. Using the numbers from the previous step, give a numeric answer for the time in seconds that elapse when the package, initially at rest, travels a distance of 4.75 m down the ramp. 3. Using the numbers from the previous steps, give a numeric answer for the speed of the package at the moment it has traveled a distance of 4.75 m down the ramp.arrow_forwardHi, I need help with part d of this question. Thanks.arrow_forwardi need it in 15 minutes hand written answerarrow_forward
- Two crates connected by a rope lie on a horizontal surface (Figure 1). Crate A has mass mA and crate B has mass mB. The coefficient of kinetic friction between each crate and the surface is μk. The crates are pulled to the right at constant velocity by a horizontal force F. In terms of mA, mB, and μk, calculate the magnitude of the force F. Express your answer in terms of some or all of the variables mA, mB, μk, and acceleration due to gravity g. In terms of mA, mB, and μk, calculate the tension in the rope connecting the blocks. Include the free-body diagram or diagrams you used to determine each answer.arrow_forwardSally is the salamander, mr. Gonzalez is holding the leash.arrow_forwardAn object of mass m has these three forces acting on it (there is no normal force, "no surface"). F1 = 1 N, F2 = 10 N, and F3 = 4 N. When answering the questions below, assume the x-direction is to the right, and the y-direction is straight upwards. What is the magnitude of the net force, in newtons? What is the angle θ, in degrees, of the net force, measured from the +x-axis? Enter an angle between -180° and 180°. What is the magnitude, |a| of the acceleration, in meters per square second, if the block has a mass of 8.9 kg?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY