HEAT+MASS TRANSFER:FUND..(LL)-W/CONNECT
6th Edition
ISBN: 9781260699326
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 121P
To determine
The amount of heat transfer from the aluminum block.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
PROBLEM 4: A pre-stressed concrete pile of length L (m) is to be picked up by crane cables at two points, both equidistant
from the ends. If the concrete pile has a cross-sectional area of A (m²) and concrete has unit weight of Yc (kN/m³),
calculate the distance of the pick-up points from the end in terms of pile length. (Hint: to minimize the absolute maximum
moment, the maximum negative and maximum negative moments should be equal)
Correct and detailed solution only. Complete fbd. I will upvote.
3: Given the shear diagram of the simply supported beam shown, properly illustrate the load and bendingmoment diagram considering that the beam carries a 5 kN-m clockwise moment at C.
Chapter 4 Solutions
HEAT+MASS TRANSFER:FUND..(LL)-W/CONNECT
Ch. 4 - What is the physical significance of the Biot...Ch. 4 - What is lumped system analysis? When is it...Ch. 4 - In what medium is the lumped system analysis more...Ch. 4 - For which solid is the lumped system analysis more...Ch. 4 - For which kinds of bodies made of the same...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider a hot baked potato on a plate. The...Ch. 4 - Consider a potato being baked in an oven that is...Ch. 4 - Consider two identical 4-kg pieces of roast beef....
Ch. 4 - Consider a sphere and a cylinder of equal volume...Ch. 4 - Obtain relations for the characteristic lengths of...Ch. 4 - Obtain a relation for the time required for a...Ch. 4 - A brick of 20310257mm in dimension is being burned...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Metal plates...Ch. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - A 6-mm-thick stainless steel strip...Ch. 4 - After heat treatment, the 2-cm-thick metal plates...Ch. 4 - A long copper rod of diameter 2.0 cm is initially...Ch. 4 - Prob. 25PCh. 4 - Steel rods...Ch. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - To warm up some milk for a baby, a mother pours...Ch. 4 - A person is found dead at 5 p.m. in a room whose...Ch. 4 - Prob. 31PCh. 4 - In an experiment, the temperature of a hot gas...Ch. 4 - Prob. 33PCh. 4 - Pulverized coal particles are used in oxy-fuel...Ch. 4 - Oxy-fuel combustion power plants use pulverized...Ch. 4 - Plasma spraying is a process used for coating a...Ch. 4 - Consider a spherical shell satellite with outer...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40EPCh. 4 - Consider a sphere of diameter 5 cm, a cube of side...Ch. 4 - Prob. 42PCh. 4 - An egg is to be cooked to a certain level of...Ch. 4 - What is an infinitely long cylinder? When is it...Ch. 4 - What is the physical significance of the Fourier...Ch. 4 - Prob. 46CPCh. 4 - Prob. 47CPCh. 4 - The Biot number during a heat transfer process...Ch. 4 - A body at an initial temperature of Ti, is brought...Ch. 4 - Prob. 50PCh. 4 - In a meat processing plant, 2-cm-thick steaks...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Layers of 23-cm-thick meat slabs...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62EPCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - A 30-cm-diameter, 4-m-high cylindrical column of a...Ch. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - For heat transfer purposes, an egg can be...Ch. 4 - Citrus fruits are very susceptible to cold...Ch. 4 - Chickens with an average mass of 1.7 kg...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Oranges of 2.5-in-diameter...Ch. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - A 9-cm-diameter potato...Ch. 4 - In Betty Crocker s Cookbook, it is stated that it...Ch. 4 - Prob. 84PCh. 4 - Under what conditions can a plane wall be treated...Ch. 4 - What is a semi-infinite medium? Give examples of...Ch. 4 - Consider a hot semi-infinite solid at an initial...Ch. 4 - Prob. 88EPCh. 4 - Prob. 89PCh. 4 - In areas where the air temperature remains below...Ch. 4 - Prob. 91PCh. 4 - A highway made of asphalt is initially at a...Ch. 4 - A thick aluminum block initially at 20C is...Ch. 4 - Prob. 94PCh. 4 - A thick wall made of refractory bricks...Ch. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - A thick wood slab (k=0.17W/m.K,=1.2810-7m2/s) and...Ch. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - A barefooted person whose feet are at 32C steps on...Ch. 4 - What is the product solution method? How is it...Ch. 4 - How is the product solution used to determine the...Ch. 4 - Prob. 109CPCh. 4 - Consider a short cylinder whose top and bottom...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - A hot dog can be considered to be a cylinder 5 in...Ch. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - A 2-cm-high cylindrical ice block...Ch. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124CPCh. 4 - How does refrigeration prevent or delay the...Ch. 4 - What are the environmental factors that affect the...Ch. 4 - What is the effect of cooking on the...Ch. 4 - Prob. 128CPCh. 4 - Prob. 129CPCh. 4 - Prob. 130CPCh. 4 - Prob. 131CPCh. 4 - How does the rate of freezing affect the...Ch. 4 - Prob. 133CPCh. 4 - Prob. 134CPCh. 4 - Prob. 135CPCh. 4 - Prob. 136CPCh. 4 - Prob. 137CPCh. 4 - Prob. 138PCh. 4 - Chickens with an average mass of 2.2 kg and...Ch. 4 - Prob. 140EPCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - During a picnic on a hot summer day, the only...Ch. 4 - Two metal rods are being heated in an oven with...Ch. 4 - Stainless steel ball bearings...Ch. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - In Betty crockers Cookbook, it is stated that it...Ch. 4 - A watermelon initially at 35C is to be cooled by...Ch. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - Prob. 159PCh. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 163PCh. 4 - Lumped system analysis of transient heat...Ch. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - An 18-cm-long, 16-cm-wide, and 12-cm-high hot iron...Ch. 4 - Prob. 168PCh. 4 - Prob. 169PCh. 4 - Prob. 170PCh. 4 - Prob. 171PCh. 4 - Prob. 172PCh. 4 - A long 18-cm-diameter bar made of hardwood...Ch. 4 - Consider a 7.6-cm-long and 3-cm-diameter...Ch. 4 - Consider a 7.6-cm-diameter cylindrical lamb meat...Ch. 4 - Prob. 176PCh. 4 - A small chicken (k=0.45W/m.K,=0.1510-6m2/s) and...Ch. 4 - A potato may be approximated as a 5.7-cm-diameter...Ch. 4 - When water, as in a pond or lake, is heated by...Ch. 4 - A large chunk of tissue at 35C with a thermal...Ch. 4 - Prob. 181PCh. 4 - Citrus trees are very susceptible to cold weather,...
Knowledge Booster
Similar questions
- CORRECT AND DETAILED SOLUTION WITH COMPLETE FBD ONLY. I WILL UPVOTE. 8: A 2-m cantilever beam with cross-sectionshown carries a uniformly distributed load of 12 kN/m. Dueto fixture requirements, a hole of diameter 150 mm isremoved from the cross-section. (a) Calculate themaximum normal compressive stress. (b) Calculate themaximum normal tensile stress. (c) Calculate anddetermine the state of stress at the lowest point of thecircular hole.arrow_forward5: A 12-m simply supported bridge is constructed with 100-mm concrete slab deck supported by precastconcrete stringers spaced 800 mm on center. Analyze the stringers when subjected to a moving load consisting of 3 evenly spaced axle loads at 3 m and equivalent to 20 kN, 30 kN and 40 kN respectively. The self-weight of the stringers is 8.5 kN/m and the concrete deck has a unit weight of 24 kN/m3 . Neglect all other superimposed loads. Calculate: (a) the maximum shear force in the stringers; (b) the maximum bending moment in the stringers.arrow_forward2: The given continuous beam supports a uniform load with magnitude w. It has an internal hinge at C. (a)Calculate the maximum uniform load w that the beam can carry if it has a moment capacity of 65 kN-m for negativebending; (b) Calculate the maximum uniform load w that the beam can carry if it has a moment capacity of 85 kN-m forpositive bending; (c) Calculate the maximum uniform load w that the beam can carry if it has a shear capacity of 40 kN.arrow_forward
- CORRECT AND DETAILED SOLUTION WITH COMPLETE FBD ONLY. I WILL UPVOTE. 10: A wooden beam 150 mm wide by 300 mm deep is loaded asshown. The maximum flexural stress developed is 8 MN/m2. (a) Computethe maximum moment the beam section can resist. (b) Determine themaximum value of the uniform load w in kN/m. (c) Calculate the maximumvalue of the concentrated load P.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference. ONLY UPLOAD A SOLUTION IF YOU ARE SURE ABOUT THE ANSWER PLEASE.arrow_forward(b): Let us first consider controlling the orbit of deputy spacecraft to rendezvous with chief spacecraft. Define x = [r] and x = x = R to represent the deputy orbital state and its target (= chief orbit) in Cartesian coordinates, respectively. The control input is thruster acceleration, u € R³, in the ECI frame. Denote the relative state by dx = x-x. Table 2 summarize the initial orbital elements. Table 2: Keplerian orbital elements at epoch (t = 0) for deputy and chief about Earth (ECI frame) Orbital element Deputy Unit Chief semi-major axis ad = 11500 ac 10000 km eccentricity inclination ed = 0.15 id=35 ee = 0.3 i = 50 degree right ascension of ascending node d = 50 Ως = 50 degree argument of periapsis true anomaly at epoch Wd Vd= 0 = 40 We = 40 degree Ve=0 degree (b.1): Derive the error dynamics of our system in ECI frame under the influence of u. (b.2): Consider a candidate Lyapunov function V = ½dr¹ K₁dr+dv₁dv, where K₁ = K, and K, > 0. Discuss the positive definiteness of V, and…arrow_forward
- One image show problem c.1 and c.2 that I need help with. The second image shows the lyapunov function and its derivative but it is NOT the same function that is given in problem. I have attached that image as an example.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forwardThe crate of mass m is supported on a cart of negligible mass as shown in (Figure 1). Determine the maximum force P that can be applied a distance d from the cart bottom without causing the crate to tip on the cart. Express your answer in terms of some, all, or none of the variables b, d, h, m, and the acceleration due to gravity g. P B harrow_forward
- Consider a pair of pipes running in parallel, through which 1200 GPM flows, which have thefollowing features:Pipe 1: Carbon Steel, Schedule 40, 8" Diameter, 1200 GPM, Water at 44°F, Fittings:2 tees, 2 butterfly valves, 2 pressure gauges with their respective ball valves, 1 valvemotorized balloon. All valves are completely open. Length of the pipe is 6 feet. Pipe 2: consists of a carbon steel bypass pipe, schedule 40, diameter of 4",with the following accessories: 2 elbows long radius of 90° and an open globe valve.The length of the pipe is 10 feet. a) Determine the flow rate in each pipe.b) The pressure drop.arrow_forward1-ft3 of air is contained in a spring-loaded piston-cylinder device. The spring constant is 6 lbf/in, and thepiston diameter is 12 in. When no force is exerted by the spring on the piston, the state of the air is 250 psiaand 450◦F. This device is now cooled until the volume is one-third its original size. Determine the changein the specific internal energy and enthalpy of the air.arrow_forwardThis is a tilt and rotation question. Here are notes attached for reference.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY