Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 9SQ
To determine
State at what range of power factor the high-speed wound rotor motors can operate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6.
A practical 10 μH wire wounded inductor has a series parasitic resistance of 0.4
Ohm, as shown in the figure below.
a
10 pH
0.4 Ω
W°
b
If an AC current y₁ = 4cos (20πt + 60°) is supplied to this inductor,
(1) calculate the voltage across the inductor terminals a and b.
(2) express the inductor terminal voltage and current in the complex plane.
(3) calculate the phase shift between inductor terminal voltage and current
If an AC current y₂ = 4cos (2000лt + 60°) is supplied to this inductor,
(4) calculate the voltage across the inductor terminals a and b.
(5) express the inductor terminal voltage and current in the complex plane.
(6) calculate the phase shift between inductor terminal voltage and current
1.
As shown below, an LED lightbulb is connected to the grid power. The LED
lightbulb has a rated power of 15 W, and the gird voltage is 120 V 60 Hz. Based on the above
information
(1) what is the peak value and effective value of the current flowing through the LED light bulb,
(2) write an expression of the current flowing through the LED light bulb.
Q4: Determine the reactions at support A in structure shown in figure below.
4 kN/m
2.5 kN/m
9 m
4 m
Chapter 39 Solutions
Electric Motor Control
Ch. 39 - Prob. 1SQCh. 39 - What is the effect of the starting winding of the...Ch. 39 - What are typical applications of synchronous...Ch. 39 - Prob. 4SQCh. 39 - A loaded synchronous motor cannot operate...Ch. 39 - Why must a discharge resistor be connected in the...Ch. 39 - Depending on their power factor ratings, what is...Ch. 39 - At what power factor do incandescent lights...Ch. 39 - Prob. 9SQCh. 39 - The speed of a synchronous motor is fixed by the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. A circuit has three AC sources: y₁ = 5cos(wt + 30°), y2 = 4cos(wt + 120°), y3 2cos(wt 60°), calculating: = (1) y₁ + y2 y3, and express the addition in the complex plane using phasors. (2) y1 y2 y3, and express the subtraction in the complex plane using phasorsarrow_forwardDon't use ai to answer I will report you answerarrow_forwardA 50-HP, 600-V compound motor, taking 80 A, operates at a speed of 495 r.p.m. at full-load. If the flux per pole is 9.1 x 106 Maxwells and the armature resistance is 0.01502, the field resistances are 0.006 ohms and 300 ohms. Calculate: a. Field currents and the armature current b. the counter emf c. the rotational loss Ans.[2A,78A,593.362 V,8982.236 W]arrow_forward
- 1. A 600-V, 150-HP, 600 r.p.m. d.c. series motor has an armature and series field resistance of 0.120 and 0.040, respectively. The full-load current is 200A. (a) Find the back e.m.f. at full-load. (b) Find the armature developed power and torque at full-load. Ans. [568V, 1808.13 N.m]arrow_forward3. An electrical device shown below has the following depicted voltage and current definition. The current in and the voltage vin for a certain period is recorded as shown in the bottom picture. (1) In different periods from 0 to time T4, determine if the electrical device works as a load or a source. iin + iin Vin Electrical Device 0 T₁ T2 T3 ΤΑ t Vin T2 ΤΑ tarrow_forward1. A 220V d.c. shunt motor has a 5V brush drop, an armature resistance of 0.20, and a rated armature current of 40A. Calculate: (a) the counter-back e.m.f. (EC), (b) power developed by the armature (Pd) in watts (c) mechanical power developed by the armature in horsepower. Ans.[207V, 8280 W, 11.099hp]arrow_forward
- Tests are carried on 400 V, 60 Hz, Y-connected, wound rotor three-phase induction motor with the following test results: DC Test: 21 V, 43 A No Load Test: 400 V, 20 A, 1200 W, 60 Hz Blocked Rotor Test: 100 V, 44 A, 2700 W, 19 Hz Find R1, X1, R2, X2, and Xm of this motor? xxx₁ = 0.5xbm fy Pen Pd 51-5 NN (1-5) 1208 1 [10Marks] N wr Parrow_forward5- A 250 V shunt motor operates on full load at 1500 rpm and draws line current 20 A. The armature has 6 poles and is lap wound with 200 turns. Find the induced emf and the flux/pole at full load. Given that the armature and field resistances are 0.5 and 125 2 respectively. Ans.[ 24.1 m Wb]arrow_forwardNot: I need also pictures cct diagram and result Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system. Important: Please provide: 1. The Simulink file of the model. 2. Clear screenshots showing the circuit connections in MATLAB/Simulink. 3. Screenshots of the simulation results (voltage, current, efficiency, etc.).arrow_forward
- NEED HANDWRITTEN SOLUTION PLEASE DO NOT USE AIarrow_forwardNot: I need also pictures cct diagram and result Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system.arrow_forwardDetermine the node voltages V1, V2, V3, and V4, for the circuit shown in the figure where R1-15.2, R2=652, R3-72 and R4=5.2. 5 V V2 R1 w V1 R2 V3 R3 + 1.25 A R4 ①1.25 V4 15 Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning