(a)
The radius of the orbit of GPS satellite.
(a)
Answer to Problem 65P
The radius of the orbit of the GPS satellite is
Explanation of Solution
Write the expression for the gravitational force acting on the satellite.
Here,
Write the expression for the centripetal force acting on the satellite.
Here,
Write the expression for the velocity of the satellite.
Here,
Use expression (III) in (II).
Equate expressions (IV) and (I) and solve for
Conclusion:
Substitute
Therefore, the radius of the orbit of the GPS satellite is
(b)
The speed of the satellite.
(b)
Answer to Problem 65P
Speed of the satellite is
Explanation of Solution
Equation (III) gives the orbital speed of the satellite.
Conclusion:
Substitute
Therefore, speed of the satellite is
(c)
The fractional change in the frequency due to time dilation.
(c)
Answer to Problem 65P
The fractional change in the frequency due to time dilation is
Explanation of Solution
Write the expression for the frequency.
Here,
Differentiate expression.
The small fractional decrease in the frequency received from the satellite is equal to the fractional increase in period of oscillator due to the time dilation.
Write the expression for Lorentz factor.
Use expression (IX) in (VIII).
Write the binomial expansion for
Substitute expression (XI) in (X).
Conclusion:
Substitute
Therefore, the fractional change in the frequency due to time dilation is
(d)
The fractional change in frequency due to the change in position of the satellite from Earth’s surface to its orbital position.
(d)
Answer to Problem 65P
The fractional change in frequency due to the change in position of the satellite from Earth’s surface to its orbital position is
Explanation of Solution
Write the expression for the change in gravitational potential energy.
Here,
Write the given expression for the fractional change in frequency.
Conclusion:
Substitute
Substitute
Therefore, the fractional change in frequency due to the change in position of the satellite from Earth’s surface to its orbital position is
(e)
The overall fractional change in frequency due to both time dilation and gravitational blue shift.
(e)
Answer to Problem 65P
The overall fractional change in frequency is
Explanation of Solution
Write the expression for the overall fractional change in frequency.
Here,
Conclusion:
Substitute
Therefore, the overall fractional change in frequency is
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers With Modern Physics
- A rod moving with a speed v along the horizontal direction is observed to have length and to make an angle with respect to the horizontal as shown in Figure P38.17. (a) Show that the length of the rod as measured by an observer at rest with respect to the rod is p = [1( v2/c2) cos2 ]1/2. (b) Show that the angle p that the rod makes with the x axis according to an observer at rest with respect to the rod can be found from tan p = tan . These results show that the rod is observed to be both contracted and rotated. (Take the lower end of the rod to be at the origin of the coordinate system in which the rod is at rest.)arrow_forwardAn Earth satellite used in the Global Positioning System moves in a circular orbit with period 11 h 58 min. (a) Determine the radius of its orbit. (b) Determine its speed. (c) The satellite contains an oscillator producing the principal nonmilitary GPS signal. Its frequency is 1 575.42 MHz in the reference frame of the satellite. When it is received on the Earths surface, what is the fractional change in this frequency due to time dilation, as described by special relativity? (d) The gravitational blueshift of the frequency according to general relativity is a separate effect. The magnitude of that fractional change is given by ff=Ugmc2 where Ug/m is the change in gravitational potential energy per unit mass between the two points at which the signal is observed. Calculate this fractional change in frequency. (e) What is the overall fractional change in frequency? Superposed on both of these relativistic effects is a Doppler shift that is generally much larger. It can be a redshift or a blueshift, depending on the motion of a particular satellite relative to a GPS receiver (Fig. P1.39).arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P26.46. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft? Figure P26.46arrow_forward
- A distant galaxy emits light that has a wavelength of 655.6 nm. On earth, the wavelength of this light is measured to be 661.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)arrow_forward(a) Suppose a star is 7.61 ✕ 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth? years (b) The Sun is 1.50 ✕ 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? minutes (c) The Moon is 3.84 ✕ 108 m from Earth. How long (in s) does it take for a radio transmission to travel from Earth to the Moon and back? sarrow_forward(a) The distance to a star is approximately 4.97 × 10¹8 m. If this star were to burn out today, in how many years would we see it disappear? years (b) How long does it take sunlight to reach Earth? minutes (c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 x 105 km.) Sarrow_forward
- A person on earth communicating via radio transmission with an astronaut on the moon asks a question. At the time of transmission, the moon is 3.843.84 × 10105 km from the earth, and the speed of radio waves is 3.003.00 × 10108 m/s. How long must the person on earth wait for a response if the astronaut answers 5.005.00 s after the message is received?arrow_forwardA distant galaxy emits light that has a wavelength of 638.3 nm. On earth, the wavelength of this light is measured to be 639.7 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.) (a) The galaxy is (b) Number i from the earth. Units SUPPORTarrow_forward(a) The distance to a star is approximately 4.94 ✕ 1018 m. If this star were to burn out today, in how many years would we see it disappear? years(b) How long does it take sunlight to reach Earth? minutes(c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 ✕ 105 km.) sarrow_forward
- A distant galaxy emits light that has a wavelength of 711.2 nm. On earth, the wavelength of this light is measured to be 714.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.) (a) The galaxy is receding (b) Number i 2.2541 x 10^6 ✓from the earth. Units m/sarrow_forwardScientists are working on a new technique to kill cancer cells by zapping them with ultrahigh-energy (in the range of 1.00×1012 W) pulses of light that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 5.00 μm in diameter, with the pulse lasting for 4.00 ns with an average power of 2.00×1012 W. We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse. I 1.00×1021 W/m² Submit Previous Answers Part C Correct What is the maximum value of the electric field in the pulse? ΜΕ ΑΣΦ Emax Submit Request Answer Part D ? V/m What is the maximum value of the magnetic field in the pulse? ΜΕ ΑΣΦ Bmax = Submit Request Answer ? Tarrow_forward(a) The distance to a star is approximately 5.50 × 10¹8 m. If this star were to burn out today, in how many years would we see it disappear? 581.35 years (b) How long does it take sunlight to reach Earth? 8.33 minutes (c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 x 105 km.) X 1.28 Your response differs from the correct answer by more than 10%. Double check your calculations. Sarrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning