Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 29P
(a)
To determine
The proper length of the rod.
(b)
To determine
The orientation angle in the proper frame.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 39 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 39.1 - Which observer in Figure 38.1 sees the balls...Ch. 39.1 - Prob. 39.2QQCh. 39.4 - Suppose the observer O on the train in Figure 38.6...Ch. 39.4 - Prob. 39.4QQCh. 39.4 - Prob. 39.5QQCh. 39.4 - Prob. 39.6QQCh. 39.4 - You are observing a spacecraft moving away from...Ch. 39.6 - You are driving on a freeway at a relativistic...Ch. 39.8 - Prob. 39.9QQCh. 39 - Prob. 1OQ
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - Prob. 3OQCh. 39 - Prob. 4OQCh. 39 - Prob. 5OQCh. 39 - Prob. 6OQCh. 39 - Prob. 7OQCh. 39 - Prob. 8OQCh. 39 - Prob. 9OQCh. 39 - Prob. 10OQCh. 39 - Prob. 1CQCh. 39 - Prob. 2CQCh. 39 - Prob. 3CQCh. 39 - Prob. 4CQCh. 39 - Prob. 5CQCh. 39 - Prob. 6CQCh. 39 - Prob. 7CQCh. 39 - Prob. 8CQCh. 39 - Prob. 9CQCh. 39 - Prob. 10CQCh. 39 - Prob. 11CQCh. 39 - Prob. 12CQCh. 39 - Prob. 13CQCh. 39 - Prob. 14CQCh. 39 - Prob. 1PCh. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 4PCh. 39 - A star is 5.00 ly from the Earth. At what speed...Ch. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Consider electrons accelerated to a total energy...Ch. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - Prob. 65PCh. 39 - Prob. 66APCh. 39 - Prob. 67APCh. 39 - Prob. 68APCh. 39 - Prob. 69APCh. 39 - Prob. 70APCh. 39 - Prob. 71APCh. 39 - Prob. 72APCh. 39 - Prob. 73APCh. 39 - Prob. 74APCh. 39 - Prob. 75APCh. 39 - Prob. 76APCh. 39 - Prob. 77APCh. 39 - Prob. 78APCh. 39 - Prob. 79APCh. 39 - Prob. 80APCh. 39 - Prob. 81APCh. 39 - Prob. 82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 84APCh. 39 - Prob. 85APCh. 39 - Prob. 86APCh. 39 - Prob. 87APCh. 39 - Prob. 88CPCh. 39 - The creation and study of new and very massive...Ch. 39 - Prob. 90CPCh. 39 - Owen and Dina are at rest in frame S, which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Owen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forwardAn observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forwardA box is cubical with sides of proper lengths L1 = L2 = L3, as shown in Figure P26.14, when viewed in its own rest frame. If this block moves parallel to one of its edges with a speed of 0.80c past an observer, (a) what shape does it appear to have to this observer? (b) What is the length of each side as measured by the observer? Figure P26.14arrow_forward
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardConsider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forwardA rod moving with a speed v along the horizontal direction is observed to have length and to make an angle with respect to the horizontal as shown in Figure P38.17. (a) Show that the length of the rod as measured by an observer at rest with respect to the rod is p = [1( v2/c2) cos2 ]1/2. (b) Show that the angle p that the rod makes with the x axis according to an observer at rest with respect to the rod can be found from tan p = tan . These results show that the rod is observed to be both contracted and rotated. (Take the lower end of the rod to be at the origin of the coordinate system in which the rod is at rest.)arrow_forward
- Suppose the primed and laboratory observers want to measure the length of a rod that rests on the ground horizontally in the space between the helicopter and the tower (Fig. 39.8B). To derive the length transformation L = L (Eq. 39.5), we had to assume that the positions of the two ends were determined simultaneously. What happens to the length transformation equation if both observers measure the end below the helicopter at one time t1 and the other end at a later time t2?arrow_forwardAs measured by observers in a reference frame S, a particle having charge q moves with velocity v in a magnetic field B and an electric field E. The resulting force on the particle is then measured to be F = q(E + v × B). Another observer moves along with the charged particle and measures its charge to be q also but measures the electric field to be E′. If both observers are to measure the same force, F, show that E′ = E + v × B.arrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forward
- Owen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forwardJoe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY