Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 26P
To determine
The difference between the highest and lowest frequencies the extraterrestrials receive.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In this experiment, as a form of sheltering-at-home fantasy, we adopt a science=fiction scenario. It’s the year 2520 and you are an astronaut working for a private entity simply called The Company. The CEO of The Company is the 8th clone of Elon Musk. Elon 9 has provided you with a small interstellar spacecraft about a million times faster than anything we can conceive of today.
It is your job to check out the potential habitability of a few relatively near potentially habitable planets to see if human colonies can be established there to mine materials for the latest version of the Tesla automobile.
But there is a problem. Shortly before your launch, a solar-system-wide pandemic ground human economy to a standstill. So Elon 9 had to cut corners. The only device he could afford for you to measure gravity acceleration on the subject planets is a pendulum with a length of 100 cm. After landing, you will determine the gravitational acceleration at the surface of…
When Mars is 90 million km (9 x 10^10 m) from Earth, a) How long would it take for a radio wave from a video camera mounted on the back of a Mars Rover to tell ground control on earth that the Rover is about to go over a cliff? b) How long would it take for a radio signal from Earth to reach the Rover saying "STOP". c) Why do our Mars Rovers have to be "intelligent" enough to figure out how to deal with obstacles themselves?
Suppose we find an Earth-like planet around one of our nearest stellar neighbors, Alpha Centauri (located only 4.4 light-years away). If we launched a "generation ship" at a constant speed of 1500.00 km/s from Earth with a group of people whose descendants will explore and colonize this planet, how many years before the generation ship reached Alpha Centauri? (Note there are 9.46 ××1012 km in a light-year and 31.6 million seconds in a year.
Chapter 39 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 39.1 - Which observer in Figure 38.1 sees the balls...Ch. 39.1 - Prob. 39.2QQCh. 39.4 - Suppose the observer O on the train in Figure 38.6...Ch. 39.4 - Prob. 39.4QQCh. 39.4 - Prob. 39.5QQCh. 39.4 - Prob. 39.6QQCh. 39.4 - You are observing a spacecraft moving away from...Ch. 39.6 - You are driving on a freeway at a relativistic...Ch. 39.8 - Prob. 39.9QQCh. 39 - Prob. 1OQ
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - Prob. 3OQCh. 39 - Prob. 4OQCh. 39 - Prob. 5OQCh. 39 - Prob. 6OQCh. 39 - Prob. 7OQCh. 39 - Prob. 8OQCh. 39 - Prob. 9OQCh. 39 - Prob. 10OQCh. 39 - Prob. 1CQCh. 39 - Prob. 2CQCh. 39 - Prob. 3CQCh. 39 - Prob. 4CQCh. 39 - Prob. 5CQCh. 39 - Prob. 6CQCh. 39 - Prob. 7CQCh. 39 - Prob. 8CQCh. 39 - Prob. 9CQCh. 39 - Prob. 10CQCh. 39 - Prob. 11CQCh. 39 - Prob. 12CQCh. 39 - Prob. 13CQCh. 39 - Prob. 14CQCh. 39 - Prob. 1PCh. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 4PCh. 39 - A star is 5.00 ly from the Earth. At what speed...Ch. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Consider electrons accelerated to a total energy...Ch. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - Prob. 65PCh. 39 - Prob. 66APCh. 39 - Prob. 67APCh. 39 - Prob. 68APCh. 39 - Prob. 69APCh. 39 - Prob. 70APCh. 39 - Prob. 71APCh. 39 - Prob. 72APCh. 39 - Prob. 73APCh. 39 - Prob. 74APCh. 39 - Prob. 75APCh. 39 - Prob. 76APCh. 39 - Prob. 77APCh. 39 - Prob. 78APCh. 39 - Prob. 79APCh. 39 - Prob. 80APCh. 39 - Prob. 81APCh. 39 - Prob. 82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 84APCh. 39 - Prob. 85APCh. 39 - Prob. 86APCh. 39 - Prob. 87APCh. 39 - Prob. 88CPCh. 39 - The creation and study of new and very massive...Ch. 39 - Prob. 90CPCh. 39 - Owen and Dina are at rest in frame S, which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- EZ GWS. A neutron star collision produced gravitational waves passing through Earth's detectors at the starting frequency of f = 24[Hz]. If the wave travelled at the speed of light (v = 300 000 [km/s]), what is the wavelength of the gravitational wave (assuming it follows simple wave quantities)? Select one: O 12500 [m] O 8000[km] O 12500[km] O 7200[m]arrow_forwardSuppose astronomers discover a radio message from a civilization whose planet orbits a star 35 lightyears away. Their message encourages us to send a radio answer, which we decide to do. Suppose our governing bodies take 2 years to decide whether and how to answer. When our answer arrives there, their governing bodies also take two of our years to frame an answer to us. How long after we get their first message can we hope to get their reply to ours? (A question for further thinking: Once communication gets going, should we continue to wait for a reply before we send the next message?)arrow_forwardtam in Progress Light of wavelength 450 nm produces a first-order maximum at 27 degrees when viewed through a grating. At what angle (in degrees) would a first-order maximum occur for a wavelength of 600 nm viewed through this grating? O 40 O 54 O 37 O 14 14-B 4 Q Search R "Jo 15 96 65 11 T O Il app.honorlock.com is sharing your screen. Stop, sharing 6 99+ hp a whp 8arrow_forward
- The Planck time is the unique interval of time that can be built out of G, c, and h. Some physicists think that time intervals shorter than the Planck time have no meaning. Using G = 6.7 x 10-11 kg-1 m3 s-2, c = 3 x 108 m s-1, and h = 6.6 x 10-34 kg m2 s-1, calculate the Planck time, in units of 10-43 s.arrow_forwardThe HI-SEAS experiments in Hawaii are simulated Mars missions where crews cope with the stress of a real Mars mission tests of new launch vehicles for a future Mars mission attempts to grow crops in a simulated Mars environment computer simulations of Mars's climate over the past 500 million years The Apollo astronauts reported sometimes seeing random bright flashes during their missions to the Moon. These were caused by occasional malfunctions in the spacecraft's electrical system Galactic Cosmic Rays (GCR) impacting their retinas dust grains striking the surface of the spacecraft and "exploding" the solar wind impacting their retinasarrow_forwardIn a globular cluster, astronomers (someday) discover a star with the same mass as our Sun, but consisting entirely of hydrogen and helium. Is this star a good place to point our SETI antennas and search for radio signals from an advanced civilization? Group of answer choices No, because such a star (and any planets around it) would not have the heavier elements (carbon, nitrogen, oxygen, etc.) that we believe are necessary to start life as we know it. Yes, because globular clusters are among the closest star clusters to us, so that they would be easy to search for radio signals. Yes, because we have already found radio signals from another civilization living near a star in a globular cluster. No, because such a star would most likely not have a stable (main-sequence) stage that is long enough for a technological civilization to develop. Yes, because such a star is probably old and a technological civilization will have had a long time to evolve and develop there.arrow_forward
- The moon is 1.3 light-seconds away. Imagine you are standing at the Canadian Space Agency headquarters in St. Hubert, Quebec and you bounce a 755 MHz radio signal off the moon (the moon acts like a mirror, reflecting the signal, such that it comes back to you). How long will it take for that radio signal to get back to you on earth? Answer in seconds with one decimal place.arrow_forwardVoyager 2. When the Voyager 2 spacecraft was approaching towards its Neptune encounter in 1989, it was 4.5 × 10° km away from the earth. Its radio transmitter, with which it communicated with us (and we communicated with it), broadcast with a mere 22 Watt of power at the S-band (2.1 GHz). (Your home wi-fi router emits around 2 Watt at 2.4 GHz wi-fi band). Assuming the Voyager transmitter broadcast equally in all directions, (a) What signal intensity was received on the earth? (b) What electric and magnetic field amplitudes were detected? (c) How many 2.1 GHz photons were arriving per second on a radio-receiver antenna with a circular cross-section of diameter 34 meters? Two counter-propagating plane waves (a) Let E(z, t) = E0 cos(kz – wt)â + E, cos(kz + wt)x. Write E(z, t) in simpler form and find the associated magnetic field. (b) For the fields in part (a), find the instantaneous and time-averaged electric and magnetic field energy densities. (c) Let E(z, t) = E, cos(kz – wt)x + E,…arrow_forwardIf we send astronauts to Mars, there will be a time delay anytime we send or receive messages to them here on Earth. Given that Mars is an average of 54.6 million km away from Earth, how long is this time delay for a 2-way 'round-trip' communication - sent to Earth, then back to Mars? (this might be important in emergency situations) answer choices a)About 4 minutes. b)About 30 seconds. c)About 10 seconds. d)About 6 minutes.arrow_forward
- Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forwardLON-CAPA HW3-P2- X - с b Answered: A ball thro x C A ball thrown horizont x C A ball thrown horizont X lc.lib.jmu.edu/res/jmu/constacx/HW3-P2-PHYS240-FA18.problem?symb=uploaded%2fjmu%2f41283831cd70463c3jmul1%2fdefault_1536805168%2esequence____... M Gmail Jeffrey Sabol ▾ (Student) Main Menu Contents Grades YouTube Maps Submit Answer Tries 0/10 Post Discussion Translate PHYS240_0001_FA22 Day 08 Problems: Uni x 2.3 Homework-Limit X MacBook Pro Feedback Course Contents >>> >> Homework 3 » HW3-P2-PHYS240.problem A ball thrown horizontally at 45 m/s travels a horizontal distance of 162 m before hitting the ground. From what height (in m) was the ball thrown using 9.80 m/s² as the local acceleration due to gravity? Timer ii Handshake Notes 34 x + D 0 j Update Messages Courses Help Logout Evaluate Print Inf Send Feedbacarrow_forwardA radio broadcast left Earth in 1911. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.20. How many possible planets with life could have heard this signal?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY