Biology: The Dynamic Science (MindTap Course List)
4th Edition
ISBN: 9781305389892
Author: Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 4TYK
Summary Introduction
Introduction:
The nervous system of animals is made up of many neurons that innervate the muscle cells so that they can respond to a stimulus. The membrane of a neuron when not conducting electrical impulse exhibits resting membrane potential. In resting condition, the inside of the neuron is negatively charged (about −70 mv or millivolt) as compared to the outside of the neuron. This is due to an unequal distribution of positively charged ions such as sodium and potassium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Fill in the diagram, your illustration should demonstrate for each phase of the AP:
1. The relative concentration of K and Na
2. The relative voltage across the membrane
3. Any movement across the membrane of K and NA
4. The three kinds of channels in the membrane, and their state (open or closed)
5. Finally, indicate on the graph of the AP which phases correspond to hyper- polarization and which phases correspond to de-
polarization
Outside
Outside
Inside
Inside
Outside
Inside
Outside
1
Outside
Inside
Inside
Mark the following statements as true or false. If a statement is false, correct it to make a true statement. a. The resting membrane potential refers to the voltage difference across the membranes of excitable cells at rest. b. The concentration of Na+ is highest in the cytosol, and the concentration of K+ is highest in the extracellular fluid. c. The Na+>K+ pumps and gated channels maintain the Na+ and K+ gradients necessary for action potentials to occur. d. A depolarization is a change in membrane potential that makes the potential less negative. e. A local potential is a change in membrane potential that conducts the long-distance signals of the nervous system
Which of the following primarily reflects the opening of voltage-gated Na+ channels?
A. The resting membrane potential
B. The depolarization phase of the action potential
C. The threshold potential
D. The repolarization phase of the action potential
E. All of the above
Chapter 39 Solutions
Biology: The Dynamic Science (MindTap Course List)
Ch. 39.1 - Prob. 1SBCh. 39.1 - Prob. 2SBCh. 39.1 - Prob. 3SBCh. 39.2 - Prob. 1SBCh. 39.2 - Prob. 2SBCh. 39.3 - Prob. 1SBCh. 39.3 - Prob. 2SBCh. 39.4 - Prob. 1SBCh. 39 - Prob. 1TYKCh. 39 - Prob. 2TYK
Ch. 39 - An example of a synapse could be the site where:...Ch. 39 - Prob. 4TYKCh. 39 - The major role of the Na+/K+ pump is to: a. cause...Ch. 39 - In the propagation of a nerve impulse: a. the...Ch. 39 - Which of the following does not contribute to...Ch. 39 - Which of the following statements best describes...Ch. 39 - Prob. 9TYKCh. 39 - Prob. 10TYKCh. 39 - Prob. 11TYKCh. 39 - Prob. 12TYKCh. 39 - Prob. 13TYKCh. 39 - Prob. 14TYKCh. 39 - Prob. 15TYKCh. 39 - Prob. 16TYKCh. 39 - You learned in this chapter that Na+/K+ active...Ch. 39 - Prob. 2ITDCh. 39 - Prob. 3ITD
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- The resting membrane potential results fromA. uneven distribution of ions across the cell membrane only.B. differences in membrane permeability to Na+ and K+ onlyC. activity of the sodium/potassium pump only.D. uneven distribution of ions across the cell membrane, differences in membrane permeability to Na+ and K+, and sodium/potassium pump activityarrow_forwardAll of the following statements correctly describe a polarized membrane EXCEPT which? a. There is a separation of the charge by a membrane, resulting in its ability to do work. b. An RMP of –60 mV indicates that there are more positive ions inside the axon than an RMP of –70 mV. c. A resting membrane potential (RMP) of –90 mV indicates the there are more positive ions inside the axon than an RMP of –70 mV. d. There is a difference in the charges found on the inside of the membrane to the outside.arrow_forwardWhat happens to the sodium inside the cell once the action potential has passed down the axon. (Short answer)arrow_forward
- Draw details of the repolarization phase of an action potential from the following descriptions of the sequences of AfterHyperPolarization (AHP) and AfterDePolarization (ADP) sequences. Make the distinct phases clear and noticeable (5 % each) A complex AHP consisting of a first component AHP, an ADP, and a second component AHP before repolarization to resting membrane potential a first fast AHP component, followed by a slower AHP, followed by a fast ADP, and a second late AHP component before repolarization to restarrow_forwardfactors responsible for a negative resting membrane potential include: check all that apply: a. Na K pump b. different carrier proteins c. uneven distribution of ions d. difference in permeability of ions e. high potassium concentration in ECFarrow_forwardAt rest, a neuron has a lower concentration of sodium than the surrounding fluid. The neuron also has a higher concentration of potassium inside the cell. The sodium-potassium ion pump is used to maintain the neuron in the resting state. Which of the following statements is true? A. Remaining at rest requires the use of ATP. B. Remaining at rest requires an input of sodium. C. Remaining at rest requires the activation of cotransporters. D Remaining at rest requires decreased permeability of the membrane.arrow_forward
- Match the description with the statement that best describes the following statements hyperpolarization repolarization depolarization A. usually corresponds to opening of voltage-gated potassium channels B. any change in the membrane potential that moves the membrane potential to a value more positive than the resting potential (eg from -70mV to +35mV) C. any change in the membrane potential that moves the membrane potential to a value more negative than the resting potential (eg from -70mV to -85mV)arrow_forwardwhich of the following statements is false with regard to cell electrical impulses? a. an impulse begins when chloride ions are allowed to rush inside the cell b. depolarization is when the relative charges across the membrane have switched due to ions crossing the membrane c. repolarization refers only to the relative charges across the membrane being restored, even when the ion balance is not returned to normal yet d. ionic balance is brought back to resting potential by the sodium-potassium pumpsarrow_forwardWhich of the following statements about membrane ion channels is incorrect? a. mechanically gated channels respond to physical deformation b. ligand-gated channels respond to neurotransmitters c. voltage-gated channels respond to changes in membrane potential d. leakage channels have gates and are always open e. none of the abovearrow_forward
- Which of the following events correctly ranks steps in an action potential? 1. Voltage-gated sodium and potassium channels transition from closed to open states allowing sodium ions to enter and potassium ions to exit. 2. Voltage-gated sodium channels transition from open to inactivated states. 3. Ligand-gated sodium channels are triggered to open. 4. Peak potassium permeability. 5. Peak sodium permeability. 6. Membranes hyperpolarize due to more potassium ions exiting cell and neuron enters refractory period. 7. Critical threshold is achieved. O 3, 1, 7, 5, 2, 4, 6 O 3, 7, 1, 5, 4, 6, 2 O 3, 4, 1, 2, 6, 7,5 O 6, 7, 3, 2, 5, 4, 1 O 7, 5, 3, 1, 4, 6, 2 4, 6, 3, 7, 5, 2, 1arrow_forwardThere is a type of toxin found in the liver of the puffer fish that prevents the opening of voltage-gated Na+ channels in neurons. The effect of this toxin is to: Group of answer choices A. prevents the initiation of the action potential B. depolarizes the membrane potential and maintains it depolarized C. prolongs the return of the membrane potential to the resting level D. increases the duration of the action potentialarrow_forwardWhich of the following statements is TRUE of the action potential? A. At the peak of the action potential there are approximately an equal amount of open voltage gated sodium and potassium channels B. To reach threshold the action potential requires the activity of sodium potassium pump C. During the rising phase (prior to the peak) of the action potential more voltage gated sodium channels are open than voltage gated potassium channels D. None of the choice options are TRUE of the action potential E. The overshoot phase (below resting membrane potential) is a result of voltage gated sodium channels taking a long time to close.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Nervous System - Get to know our nervous system a bit closer, how does it works? | Neurology; Author: FreeMedEducation;https://www.youtube.com/watch?v=6O-0CVAgaEM;License: Standard youtube license