University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.90PP
To determine
Why it is easier to use helium ions as compared to neutral helium atoms in such a microscope from the following options:
(a) Helium atoms are not electrically charged, and only electrically charged particles have wave properties.
(b) Helium atoms form molecules, which are too large to have wave properties.
(c) Neutral helium atoms are more difficult to focus with electric and magnetic fields.
(d) Helium atoms have much larger mass than helium ions do and thus are more difficult to accelerate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Electrons with an energy of 0.610 eV are incident on a double slit in which the two slits are separated by 60.0 nm.
a) What is the de Broglie wavelength (in nanometers) of these electrons?
b) What is the angle between the two second-order maxima in the resulting interference pattern?
I really appreciate the help on this question. I've been stumped on it.
The wavelengths of visible light range from approximately 400400 to 750 nm750 nm.
Part (a) What is the minimum energy for a photon in this range? Give your answer in electron volts.
Part (b) What is the maximum energy for a photon in this range? Give your answer in electron volts.
You have three metal samples—A, B, and C—that aretantalum (Ta), barium (Ba), and tungsten (W), but you don’tknow which is which. Metal A emits electrons in response to vis-ible light; metals B and C require UV light. (a) Identify metal A,and find the longest wavelength that removes an electron. (b)What range of wavelengths would distinguish B and C? [Thework functions are Ta (6.81x10^-19J), Ba (4.30x10^-19J), andW (7.16x10^-19J)
Chapter 39 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a) The element helium is named for the Sun because that is where it was first observed. What is the shortest wavelength that one would expect to observe from a singly ionized helium atom in the atmosphere of the Sun? b) Suppose light with a wavelength of 388.9 nm is observed from singly ionized helium. What are the initial and final values of the quantum number nn corresponding to this wavelength? Enter your answers numerically separated by a commaarrow_forwardWhat can be concluded from the diffraction pattern generated by a single electron fired in the double slit experiment? Pairs of electrons are needed to generate an interference pattern. Electrons are smaller than photons. Electrons can act like macroscopic particles. Single electrons interfere with themselves. Please answer ASAParrow_forwardPulsed lasers have many applications, but are very complicated to construct. One problem is chromatic aberration, another is aligning the components. Commonly available laser systems can produce 1 fs (10-¹4 s) pulses. a) how far does light travel in 1 fs? b) If the energy per pulse is 100 mJ, what's the power per pulse (in Watts)? c) calculate the (minimum) spread of frequencies required to produce a 1 fs pulse. d) if the center wavelength is 1 um, what is the range of wavelengths contained in a single pulse? e) common varieties of optical glass have a dispersion An/A2 = 0.025/micron. 1) if the index of refraction is 1.51 for λ = 1 um, what is the value of 'n' for the upper and lower wavelength? 2) the focal length of a lens is inversely proportional to the index of refraction: 1/f~ (n-1). What is the ratio of the focal lengths for the two extreme wavelengths? 3) how much longitudinal chromatic aberration (the difference in focal length between two colors) is there for a 100 mm focal…arrow_forward
- 5.3. A material of simple tetragonal Bravais lattice (a = 2.4 Å, c = 3.6 Å) is prepared in a plate shape so that the sample surface is parallel to (001). When the sample was symmetrically scanned in the 20 range from 20° to 100° using an X-ray beam at 1.54 Å, at which 20 positions will the diffraction peaks be observed? How will the diffraction pattern change if the sample is replaced by a crystal of body-centered tetragonal lattice? Assume that all the other condi- tions are the same.arrow_forwarda)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg Express your answer to two significant figures and include the appropriate units.arrow_forwardI need help with this question. Originally I got 3 degrees for the answer, but it appears that this is incorrect and I don't know what went wrong. Here is the question: Electrons with an energy of 0.610 eV are incident on a double slit in which the two slits are separated by 60.0 nm. Electron speed is 4.63e+05 m/s and the de Broglis wavelength of the electrons is 1.57 nm. What is the angle between the two second-order maxima in the resulting interference pattern. I really appreciate the help!arrow_forward
- Problem 3. A Fabry-Perot laser cavity is made of two identical mirrors. Each miror has an optical power reflectance R=0.999. The distance between the two mirrors is d=10 cm. The laser cavity is filled a gas material as the gain medium with an index of refraction n=1.05. (a) What is the photon life time of this laser cavity? (b) In order to make a laser using this cavity, you need to pump the gain medium to have a gain for compensating the losses at two mirrors. What is the threshold gain coefficient for this laser?arrow_forwardSolar radiation falls on Earth's surface at a rate of 1900 W/m². Assuming that the radiation has an average wavelength of 580 nm, how many photons per square meter per second fall on the surfaces? The speed of light is 3 × 10° m/s and Planck's constant is 6.62607 × 10-34 J. s. Answer in units of photon/m² · s. 2arrow_forwardSuppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don't we simply use short-wavelength electromagnetic waves? There's a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let's compare the energy of a photon and an electron that can provide the same resolution. For the electron with a de broglie wavelength of 3.5 nm, what is the kinetic energy (in eV)?arrow_forward
- Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.a. For light of wavelength 5.0 nm, what is the energy (in eV) of a single photon? In what part of the electromagnetic spectrum is this?b. For an electron with a de Broglie wavelength of 5.0 nm, what is the kinetic energy (in eV)?arrow_forwardYou are working as a demonstration assistant for a physics professor. She wants to demonstrate to her students the buildup of the interference pattern for single electrons passing through a double slit, as shown. Her source of electrons will be a certain vacuum tube, in which electrons evaporate from a hot cathode at a slow, steady rate and accelerate from rest through a potential difference of 45.0 V. After being accelerated, they travel through a fieldfree and evacuated region before they pass through the double slits and fall on a screen to produce an interference pattern. To ensure that only one electron at a time is passing through the slits, she wants the electrons to be separated in space by d = 1.00 cm (perpendicular to the barrier containing the slits) as they approach the slit. She asks you todetermine the maximum value for the beam current that will assure that only one electron at a time passes through the slits.arrow_forwardA beam of X-ray diffraction (XRD) with a CuKa radiation of wavelength, λ = 1.541 Å, falls on a powder of three samples (A, B and C) which crystallized in the following crystal structure: sample A: body center cubic (BCC) with lattice parameter a = 4 Å; sample B: tetragonal, with lattice parameters a = b = 4 Å and c = 6 Å and sample C: orthorhombic, with lattice parameters a = 4 Å, b = 6Å and c = 8 Å. 1. For the first order Bragg diffraction, which of the three sample will give the smallest Bragg angle on the plan (111)? 2. Explain clearly with some calculations, if there will be higher order reflections on the plan (111) for the three samples.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning