University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.43E
(a)
To determine
The total radiated intensity of Sirius B.
(b)
To determine
The peak intensity of the wavelength and also to know whether this is visible to humans.
(c)
To determine
The radius of Sirius B and also to express it in terms of sun’s radius.
(d)
To determine
Who radiates more radiated power a star or a Sirius star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The brightest star in the sky is Sirius, the Dog Star. It is actually a binary system of two stars, the smaller one (Sirius B) being a white dwarf. Spectral analysis of Sirius B indicates that its surface temperature is 24,000 K and that it radiates energy at a total rate of 1.0 * 1025 W. Assume that it behaves like an ideal blackbody. (a) What is the total radiated intensity of Sirius B? (b) What is the peak-intensity wavelength? Is this wavelength visible to humans? (c) What is the radius of Sirius B? Express your answer in kilometers and as a fraction of our sun’s radius. (d) Which star radiates more total energy per second, the hot Sirius B or the (relatively) cool sun with a surface temperature of 5800 K? To find out, calculate the ratio of the total power radiated by our sun to the power radiated by Sirius B..
The brightest star in the sky is Sirius, the Dog Star. Itis actually a binary system of two stars, the smaller one (Sirius B)being a white dwarf. Spectral analysis of Sirius B indicates that itssurface temperature is 24 000 K and that it radiates energy at a totalrate of 1.0 · 1025 W. Assume that it behaves like an ideal blackbody.(a) What is the radius of Sirius B? Express your answer in kilometersand as a fraction of our Sun’s radius (R= 6.96 · 108 m). (b) Whichstar radiates more total energy per second, the hot Sirius B or the(relatively) cool Sun with a surface temperature of T = 5800 K? Tofind out, calculate the ratio of the total power radiated by our Sun tothe power radiated by Sirius B.
When stars like the Sun die, they lose their outer layers and expose their very hot cores. These exposed cores are called white dwarf stars. A certain white dwarf star has a peak emission wavelength of 0.546 nm. Approximating the star as a blackbody, what is its surface temperature?
Wien's Displacement constant is b = 2.898 x 10-3 K m.
The Stefan-Boltzmann constant is ? = 5.670 x 10-8 W/m2K4.
Chapter 39 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) For what temperature is the peak of blackbody radiation spectrum at 400 nm? (b) If the temperature of a blackbody is 800 K, at what wavelength does it radiate the most energy?arrow_forwardAn astronomer observes the spectrum of a distant star and notices that the Hydrogen alpha absorption line appears with a wavelength of 590.4 nm. This spectral line has a wavelength of 656 nm when measured in the laboratory. Choose the option below that most plausibly explains this observation. Select one: а. Some intervening material must be imposing an unusual absorption spectrum on the star's continuum radiation O b. The star is moving towards the observer with a speed of 10% of the speed of light. О с. The star is moving away from the observer with a speed of 10% of the speed of light O d. The star is moving towards the observer with a speed 10 m/s O e. The star has a very hot atmosphere е. that changes the wavelengths of the spectral linesarrow_forwardWhat is the energy range (in joules and eV) of photons in the visible spectrum, of wavelength 410 nm to 740 nm ? Express your answers using two significant figures. Enter your answers numerically separated by a comma. ΜΕ ΑΣΦ Emin, Emax = Submit Request Answer Part B ? J Express your answers using two significant figures. Enter your answers numerically separated by a comma. Emin, Emax = Η ΑΣΦ ? eV Submit Request Answerarrow_forward
- 2. a) At what wavelength is the peak in the thermal ("blackbody") spectrum of the Sun? What about for the Earth? Make sure you show how you got these numbers, and then b) Give a term for the part of the electromagnetic spectrum in which these peaks occur (e.g., x-ray, UV, Visible, IR, microwave, etc.). c) What is the total flux emitted in each case (in W m ²)?arrow_forwardA blue supergiant star has a radius of 7.4 x 1010 m. The spherical surface behaves like a blackbody radiator. If the blue supergiant star radiates an energy rate of 1.29 × 1033 w, what would be its surface temperature (in °C)? The Stefan-Boltzmann constant is 5.67 × 10-8 w/(m2 . K4).arrow_forwardQuestion A7 The intensity of the emitted radiation by a star is at a maximum at a wavelength of 78.9 nm. a) Calculate the surface temperature of the star. b) Calculate the ratio of the intensity radiated at 65.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forward
- B2. A spherical star is detected by an astronaut in a spacecraft at a distance z of 1.5×10¹2 kilometers. The star can be regarded as a blackbody with a temperature of 11,300 K. The radius r of the star is 3.5×106 kilometers. (a) Calculate the radiant exitance and the radiant intensity of the star. (b) Calculate the irradiance that can be detected by the astronaut. (c) The photodetector used by the astronaut in the spacecraft has a responsivity of 120 kV/W and an photosensitive area of 0.5 mm². Calculate the output voltage of the detector in the detection of the star. CAMINS +II+ Figure B2arrow_forwardThe Sun radiates almost like a perfect blackbody at a temperature of T= 5800 K. a) Show, using the Stefan-Boltzmann law, that the rate at which it radiates energy is - 4x1026 W. b) If you were at Earth's orbit, in space, how many Sun photons would reach you per second? Assume you have a mass of 70 kg, are spherical and full of water. You may need to find your cross sectional area and assume all Sun photons move in the same direction.arrow_forwardQUESTION1: Stefan-Boltzman law can be used to estimate H emitted from a surface where H = AeoT, where H = surface area (m2) in units of watts, e = diffusivity characterizing the spreading properties of the surface, o = a universal constant called the Stefan-Boltzman constant. (-5.67x108 W m?K4) and T = absolute temperature (K). a) Determine the error of the radiation H of a steel sphere surface with radius = 0.15 + 0.02 m, e 0.90+ 0.05 and T = 550 ± 25 K. Compare your results with the exact error. Calculations b) radius = 0.15 0.01 m, e 0.90 +0.025 Repeat for T = 550 12.5 K. and Interpret your results.arrow_forward
- 1arrow_forwardA perfect black body has its surface temperature 27 cº Determine : Maximum radiation wavelength? Black body radiation intensity? The rate of energy released from 2m² Tungsten wire had its radiating surface area 8mm² and its temperature 2100K, considering that the wire is an ideal black body, Calculate the energy that the wire radiates in 10 minutes. Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How much more thermal radiation would the Sun emit? b. What would happen to the Sun's wavelength of peak emission? c. Do you think it would still be possible to have life on Earth? Explain /A The energy radiated by a black body at 2300K is found to have the maximum at a wavelength 1260 nm, its emissive power being 8000W/m2. When the body is cooled to a temperature T K, the emissive power is found to decrease to 500W/m2. Find : (i) the temperature T k (ii) the wave length at which intensity of emission in maximum at the Te / Black body becomes yellow with λ…arrow_forwardA Blackbody radiator emits blue light with a wavelength of 475 nanometres (nm).a) Describe what a “Blackbody radiator” is.b) How much energy is being produced by each blue light photon emitted (in units of joules AND electron-volts)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax