University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 39.75P
(a)
To determine
The speed required to have wavelength of
(b)
To determine
Time taken to move
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of electrons is accelerated from rest through a potential difference of 0.100 kV and then passes through a thin slit. When viewed far from the slit, the diffracted beam shows its first diffraction minima at+-14.6° from the original direction of the beam. (a) Do we need to use relativity formulas? How do you know? (b) How wide is the slit?
Diffraction effects become significant when the width of an aperture is comparable to the wavelength of the waves being diffracted. (a) At what speed will the de Broglie wavelength of a 65-kg student be equal to the 0.76-m width of a doorway? (b) At this speed, how much time will it take the student to travel a distance of 1.0 mm? (For comparison, the age of the universe is approximately 4 * 10^17 s.)
If your wavelength were 1.0 m, youwould undergo considerable diffraction in moving through a doorway.(a) What must your speed be for you to have this wavelength? (Assumethat your mass is 65.0 kg.) (b) At the speed calculated in part (a), howmany years would it take you to move 0.70 m (one step)? Will younotice diffraction effects as you walk through doorways?
Chapter 39 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Similar questions
- The elliptical galaxy NGC 4889 is the largest galaxy in the Coma Cluster (shown in the image below taken by the Hubble Space Telescope). After analysing the spectrum of NGC 4889, an astronomer identifies a spectral line as being CaII (singly ionised Calcium) with a measured wavelength of 401.8 nm. The true, rest wavelength of this spectral line, measured in a lab, is 393.3 nm. Using a Hubble constant of ?0 = 70 km/s/Mpc, find the distance to this galaxy cluster. Give your answer in megaparsecs and in light-years.arrow_forwardIn an earlier version of the double-slit experiment, scientists used helium atoms (from a reservior kept at 295 K) that exit the nozzle after expansion with a wavelength λ = 0.56 Å. Find the speed of these helium atoms.arrow_forwardAssuming that the smallest measurable wavelength in an experiment is 0.990 fm (femtometers), what is the maximum mass of an object traveling at 269 m/s for which the de-Broglie wavelength is observable?arrow_forward
- A student performs the experiment and measures the distance between photogates: d = 50 ± 0.1 cm, the times measured by photogates: t0 = 0.052 ± 0.001s and t1 = 0.035 ± 0.001s, and the cart’s length: s = 10 ± 0.05 cm. Find the acceleration a of the cart and estimate uncertainty in a.arrow_forwardAn unknown moving ion is confined in a OD nanomaterial in which all three dimensions are equals to 5 nm. Estimate with what accuracy its velocity and energy can be measured (given mass of the ion is 4.8×10 26 kg)?arrow_forwardA Ferrari with a mass of 1400 kg approaches a freewayunderpass that is 12 m across. At what speed must the carbe moving, in order for it to have a wavelength such thatit might somehow “diffract” after passing through this“single slit”? How do these conditions compare to normalfreeway speeds of 30 m/s?arrow_forward
- A neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places. 1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.arrow_forwardWhen an aperture's diameter matches the wavelength of the waves being diffracted, the effects of diffraction become noticeable. (A) At what speed would a 75-kg student's de Broglie wavelength be the same as a doorway's 0.76-m width? (b) How long will it take the student to traverse 5.0 millimeters at current speed? (In contrast, the universe is thought to have existed for about 4 * 1017 seconds.)arrow_forwardA physicist makes many measurements of the frequency of light emitted when a electron transitions from a particular excited state of an ion. For the system she is studying, the only allowed transition from the excited state is to the ground state. Her measurements have an average value of favg=2.13×1015 Hz with a standard deviation of ?f=17.4×106 Hz. What is the minimum lifetime Δtmin of the excited state in seconds?arrow_forward
- 3arrow_forward.5. Imagine a universe in which you have a de Broglie wavelength of 1 meter. In your everyday life, you would then be susceptible to experience considerable wave-like phenomena, such as diffraction and interference. Estimate the speed you would need to have in order to acquire this wavelength. Also, compute how long it would take you to move through 0.8 meter (i.e., about one step) with this speed.arrow_forwardProblem 1: If electromagnetic radiation with a photon energy of 20 meV impinges on two slits spaced 0.1 mm apart, find the angle between the center line and the 1 minimum and 1 maximum of the resulting interference pattern. Problem 2: A non-relativistic beam of electrons travels at 5% the speed of light and impinges on a slit that is 0.05 um wide. Use modern units (e.g eV, etc) to find thearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill