University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.13DQ
To determine
Why study of small organic molecules is done using electron microscopes than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Follow up questions: Sunburn (and skin cancer) is caused by ultraviolet light waves having a frequency of around 1.02×10^16 Hz. What is their wavelength?
It has been suggested that extraterrestrial civilizations (if they exist) might try to communicate by using electromagnetic waves having the same frequency as that given off by the spin flip of the electron in hydrogen, which is 1.43 GHz. To what wavelength should we tune our telescopes in order to search for such signals?
Microwave ovens cook food with electromagnetic waves of frequency around 2.45 GHz. What wavelength do these waves have?
How much energy does a photon of UV light (frequency = 3.6 x 1016 Hz) have? How fast do the light travel in a vacuum, water (n=1.33), and glass (n=1.50)?
Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.
For the electron with a de broglie wavelength of 3.5 nm, what is the kinetic energy (in eV)?
Chapter 39 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.a. For light of wavelength 5.0 nm, what is the energy (in eV) of a single photon? In what part of the electromagnetic spectrum is this?b. For an electron with a de Broglie wavelength of 5.0 nm, what is the kinetic energy (in eV)?arrow_forwardConsider six proposed properties of electromagnetic radiation: wave speeds of 3.00 x 10° km/s and 3.00 x 10°m/s, wavelengths of 563 nm and 0.193 nm, and frequencies of 2.15 x 1018 Hz and 6.26 x 1014 Hz. Place these according to whether they apply only to the X-ray band, only to the visible light band, to both bands, or to neither band. X-ray band only Visible light band only Both bands Neither band Answer Bank frequency of 6.26 × 1014 Hz. speed of 3.00 x 10* m/s speed of 3.00 x 10* km/s frequency of 2.15 × 10'8 Hz wavelength of 0.193 nm wavelength of 563 nmarrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10 18 nm (b) What is its wavelength in flint glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the flint glass? The energy of the photon changes. The energy of the photon does not change. Hz. Explain.arrow_forward
- Question: The electronic structure of atoms and molecules may be investigated using photoelectron spectroscopy. An electron in a photoelectron spectrometer is accelerated from rest by a uniform electric field to a speed of 420 km s−1 in 10 µs. Determine the kinetic energy of the electron?arrow_forwardCan you answer the question?arrow_forwardIn Chapter 22, the intensity of light striking a surface was related to the electric field of the associated electro- magnetic wave. For photons, the intensity is the number of photons striking a 1-m? area per second. Suppose 1.0 x 1012 photons of 497-nm light are incident on a 1-m² surface every second. What is the intensity of the light? Using the wave model of light, what is the maximum electric field of the electromagnetic wave?arrow_forward
- Suppose that the microwave radiation has a wavelength of 11.6 cm. How many photons are required to heat 265 mL of coffee from 25.0 degrees Celcius to 62.0 degrees Celcius? Assume that the coffee has the same density, 0.997 g/mL, and specific heat capacity, 4.184 J/(g.K), as water over this temperature range.arrow_forwardA limitation on how many spectra per second can be recorded by a time-of-flight mass spectrometer is the time it takes the slowest ion to go from the source to the detector. Suppose we want to scan up to m/z 500 for ions with z = 1. Calculate the speed of this heaviest ion if it is accelerated through 5.00 kV in the source. How long would it take to drift 2.00 m through a spectrometer? At what frequency could you record spectra if a new extraction cycle were begun each time the heaviest ion reached the detector? What would be the frequency if you wanted to scan up to m/z 1000?arrow_forwardWhat is the wavelength, in nm, of a photon with energy (a) 0.30 eV, (b) 3.0 eV, and (c) 30 eV? For each, is this wavelength visible light, ultraviolet, or infrared?arrow_forward
- What are the energy and momentum of a photon of red light of wavelength 620 nanometers (nm)? What is the wavelength (in nm) of photons of energy 2.40 eV?arrow_forwardA recent study found that electrons that have energies between 3.15 eV and 20.9 eV can cause breaks in a DNA molecule even though they do not ionize the molecule. If a single photon were to transfer its energy to a single electron, what range of light wavelengths could cause DNA breaks? minimum wavelength: maximum wavelength: nm nm In which part of the electromagnetic spectrum does this light lie? ultraviolet radio infrared gamma rayarrow_forwardHow fast must an electron be moving if all its kinetic energy is lost to a single x-ray photon with the following characteristics? (a) The photon has a wavelength of 3.55 x 10-8 m near the high end of the x-ray electromagnetic spectrum. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully.c (b) The photon has a wavelength of 3.55 x 10-13 m near the low end of the x-ray electromagnetic spectrum,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning