Concept explainers
(i) An object is plated at a position p > f from a concave mirror as shown in Figure CQ39.12a, where f is the focal length of the mirror. In a finite time interval, the object is moved to the right to a position at the focal point F of the mirror. Show that the image of the object moves at a speed greater than the
Figure CQ39.12
Want to see the full answer?
Check out a sample textbook solutionChapter 39 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardAu object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Fluid the location and size of the final image.arrow_forwardFigure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forward
- The disk of the Sun subtends an angle of 0.533 at the Earth. What are (a) the position and (b) the diameter of the solar image formed by a concave spherical mirror with a radius of curvature of magnitude 3.00 m?arrow_forwardAn object 2.00 cm high is placed 40.0 cm to the left of a converging lens having a focal length of 30.0 cm. A diverging lens with a focal length of -20.0 cm is placed 110 cm to the right of the converging lens. Determine (a) the position and (b) the magnification of the final image, (c) Is the image upright or inverted? (d) What If? Repeat parts (a) through (c) for the case in which the second lens is a converging lens having a focal length of 20.0 cm.arrow_forwardA nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order to see what he is doing when he shaves?arrow_forward
- An object is placed a distance of 10.0 cm to the left of a thin converging lens of focal length f = 8.00 cm, and a concave spherical mirror with radius of curvature +18.0 cm is placed a distance of 45.0 cm to the right of the lens (Fig. P38.129). a. What is the location of the final image formed by the lensmirror combination as seen by an observer positioned to the left of the object? b. What is the magnification of the final image as seen by an observer positioned to the left of the object? c. Is the final image formed by the lensmirror combination upright or inverted? FIGURE P38.129arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardA converging lens has a focal length of 10.0 cm. Locate the object if a real image is located at a distance from the lens of (a) 20.0 cm and (b) 50.0 cm. What If? Redo the calculations if the images are virtual and located at a distance from the lens of (c) 20.0 cm and (d) 50.0 cm.arrow_forward
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardThe left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forwardTwo converging lenses having focal lengths of f1 = 10.0 cm and f2 = 20.0 cm are placed a distance d = 50.0 cm apart as shown in Figure P35.48. The image due to light passing through both lenses is to be located between the lenses at the position x = 31.0 cm indicated. (a) At what value of p should the object be positioned to the left of the first lens? (b) What is the magnification of the final image? (c) Is the final image upright or inverted? (d) Is the final image real or virtual?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning