EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 39, Problem 39.9OQ
Which of the following statements are fundamental postulates of the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Which of the following are part of the first postulate of Einstein's Special Theory of Relativity?
Time and weight are relative to the motion of the observer.
All the laws of physics are the same in all inertial frames of reference.
Absolute motion can always be detected.
a
I only
b
II only
c
III only
d
I, II, and III
The factor y (gamma) appears throughout the expressions of special relativity. It depends only on
the (constant) relative velocity between two inertial frames of reference.
Calculate y for the case when rel=0.93 c (where c is the speed of light in vacuum = 3.0 x 108
m/s).
Y =
What is the difference between the velocity vrel and the speed of light c if y = 4.8? In other words,
what is c-Vrel?
C-Vrel=
What is this velocity Urel expressed as a fraction of the speed of light (as the case of the first
question above)?
Vrel=
m/s
C
Special relativity has become a fundamental theory in the 20th century and is crucial for ex-
plaining many astrophysical phenomena. A central aspect of special relativity is the transfor-
mation from one reference frame to another. The following Lorentz transformation matrix gives
the transformation from a frame at rest to a moving frame with velocity v along the z-axis:
0 0 YB
1 0
0 1
YB 0 0
where B = v/cwith c being the speed of light in a vacuum, and y is the Lorentz factor:
1
V1- 32
(a) State and explain the two traditional postulates from which special relativity originates.
(b) Draw a plot of the Lorentz factor for 0 < B< 0.9 to see how its value changes.
One of the many exciting phenomena of special relativity is time dilation. Imagine astronauts
in a spaceship that is passing by the Earth with a high velocity.
(c) Are clocks ticking slower for the people on Earth or for the astronauts on the spaceship?
(d) How fast must the spaceship travel such that the clocks go twice as…
Chapter 39 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 39 - Which observer in Figure 38.1 sees the balls...Ch. 39 - A baseball pitcher with a 90-mi/h fastball throws...Ch. 39 - Suppose the observer O on the train in Figure 38.6...Ch. 39 - A crew on a spacecraft watches a movie that is two...Ch. 39 - Suppose astronauts are paid according to the...Ch. 39 - You are packing for a trip to another star. During...Ch. 39 - You are observing a spacecraft moving away from...Ch. 39 - You are driving on a freeway at a relativistic...Ch. 39 - The following pairs of energiesparticle 1: E, 2E;...Ch. 39 - (i) Does the speed of an electron have an upper...
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - As a car heads down a highway traveling at a speed...Ch. 39 - A spacecraft built in the shape of a sphere moves...Ch. 39 - An astronaut is traveling in a spacecraft in outer...Ch. 39 - You measure the volume of a cube at rest to be V0....Ch. 39 - Two identical clocks are set side by side and...Ch. 39 - Prob. 39.8OQCh. 39 - Which of the following statements are fundamental...Ch. 39 - A distant astronomical object (a quasar) is moving...Ch. 39 - In several cases, a nearby star has been found to...Ch. 39 - Prob. 39.2CQCh. 39 - A train is approaching yon at very high speed as...Ch. 39 - List three ways our day-to-day lives would change...Ch. 39 - Prob. 39.5CQCh. 39 - Prob. 39.6CQCh. 39 - Prob. 39.7CQCh. 39 - Prob. 39.8CQCh. 39 - Give a physical argument that shows it is...Ch. 39 - Prob. 39.10CQCh. 39 - Prob. 39.11CQCh. 39 - (i) An object is plated at a position p f from a...Ch. 39 - With regard to reference frames, how does general...Ch. 39 - Two identical clocks are in the same house, one...Ch. 39 - The truck in Figure P39.1 is moving at a speed of...Ch. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 39.4PCh. 39 - Prob. 39.5PCh. 39 - A meterstick moving at 0.900c relative to the...Ch. 39 - Prob. 39.7PCh. 39 - A muon formed high in the Earths atmosphere is...Ch. 39 - How fast must a meterstick be moving if its length...Ch. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - A physicist drives through a stop light. When he...Ch. 39 - A fellow astronaut passes by you in a spacecraft...Ch. 39 - A deep-space vehicle moves away from the Earth...Ch. 39 - For what value of does = 1.010 0? Observe that...Ch. 39 - A supertrain with a proper length of 100 m travels...Ch. 39 - The average lifetime of a pi meson in its own...Ch. 39 - An astronomer on the Earth observes a meteoroid in...Ch. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - A spacecraft with a proper length of 300 m passes...Ch. 39 - A spacecraft with a proper length of Lp passes by...Ch. 39 - A light source recedes from an observer with a...Ch. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Police radar detects the speed of a car (Fig....Ch. 39 - The identical twins Speedo and Goslo join a...Ch. 39 - An atomic clock moves at 1 000 km/h for 1.00 h as...Ch. 39 - Prob. 39.26PCh. 39 - A red light flashes at position xR = 3.00 m and...Ch. 39 - Shannon observes two light pulses to be emitted...Ch. 39 - A moving rod is observed to have a length of =...Ch. 39 - A rod moving with a speed v along the horizontal...Ch. 39 - Keilah, in reference frame S, measures two events...Ch. 39 - Figure P38.21 shows a jet of material (at the...Ch. 39 - An enemy spacecraft moves away from the Earth at a...Ch. 39 - A spacecraft is launched from the surface of the...Ch. 39 - Prob. 39.35PCh. 39 - Calculate the momentum of an electron moving with...Ch. 39 - Prob. 39.37PCh. 39 - Prob. 39.38PCh. 39 - Prob. 39.39PCh. 39 - Prob. 39.40PCh. 39 - Prob. 39.41PCh. 39 - Prob. 39.42PCh. 39 - An unstable particle at rest spontaneously breaks...Ch. 39 - Prob. 39.44PCh. 39 - Prob. 39.45PCh. 39 - Protons in an accelerator at the Fermi National...Ch. 39 - A proton moves at 0.950c. Calculate its (a) rest...Ch. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - A proton in a high-energy accelerator moves with a...Ch. 39 - Prob. 39.50PCh. 39 - The total energy of a proton is twice its rest...Ch. 39 - Prob. 39.52PCh. 39 - When 1.00 g of hydrogen combines with 8.00 g of...Ch. 39 - In a nuclear power plain, the fuel rods last 3 yr...Ch. 39 - The power output of the Sun is 3.85 1026 W. By...Ch. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - The rest energy of an electron is 0.511 MeV. The...Ch. 39 - Prob. 39.60PCh. 39 - A pion at rest (m = 273me) decays to a muon (m =...Ch. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Review. A global positioning system (GPS)...Ch. 39 - Prob. 39.66APCh. 39 - The net nuclear fusion reaction inside the Sun can...Ch. 39 - Prob. 39.68APCh. 39 - A Doppler weather radar station broadcasts a pulse...Ch. 39 - An object having mass 900 kg and traveling at...Ch. 39 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 39 - A physics professor on the Earth gives an exam to...Ch. 39 - An interstellar space probe is launched from...Ch. 39 - Prob. 39.74APCh. 39 - Prob. 39.75APCh. 39 - An object disintegrates into two fragments. One...Ch. 39 - The cosmic rays of highest energy are protons that...Ch. 39 - Spacecraft I. containing students taking a physics...Ch. 39 - Review. Around the core of a nuclear reactor...Ch. 39 - The motion of a transparent medium influences the...Ch. 39 - Prob. 39.81APCh. 39 - Prob. 39.82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 39.84APCh. 39 - Prob. 39.85APCh. 39 - An observer in a coasting spacecraft moves toward...Ch. 39 - Prob. 39.87APCh. 39 - A particle with electric charge q moves along a...Ch. 39 - Prob. 39.89CPCh. 39 - Suppose our Sun is about to explode. In an effort...Ch. 39 - Owen and Dina are at rest in frame S. which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As measured by observers in a reference frame S, a particle having charge q moves with velocity v in a magnetic field B and an electric field E. The resulting force on the particle is then measured to be F = q(E + v × B). Another observer moves along with the charged particle and measures its charge to be q also but measures the electric field to be E′. If both observers are to measure the same force, F, show that E′ = E + v × B.arrow_forwardJoe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forwardAccording to special relativity, a particle of rest mass m0 accelerated in one dimension by a force F obeys the equation of motion dp/dt = F. Here p = m0v/(1 –v2/c2)1/2 is the relativistic momentum, which reduces to m0v for v2/c2 << 1. (a) For the case of constant F and initial conditions x(0) = 0 = v(0), find x(t) and v(t). (b) Sketch your result for v(t). (c) Suppose that F/m0 = 10 m/s2 ( ≈ g on Earth). How much time is required for the particle to reach half the speed of light and of 99% the speed of light?arrow_forward
- An astronaut is traveling in a spacecraft in outer space in a straight line at a constant speed of 0.500c. Which of the following effects would she experience? (a) She would feel heavier. (b) She would find it harder to breathe. (c) Her heart rate would change. (d) Some of the dimensions of her spacecraft would be shorter. (e) None of those answers is correct.arrow_forwardSpacecraft I, containing students taking a physics exam, approaches the Earth with a speed of 0.600c (relative to the Earth), while spacecraft II, containing professors proctoring the exam, moves at 0.280c (relative to the Earth) directly toward the students. If the professors stop the exam after 50.0 min have passed on their clock, for what time interval does the exam last as measured by (a) the students and (b) an observer on the Earth?arrow_forwardSuppose our Sun is about to explode. In an effort to escape, we depart in a spaceship at v = 0.80c and head toward the star Tau Ceti, 12 lightyears away. When we reach the midpoint of our journey from the Earth, we see our Sun explode and, unfortunately, at the same instant we see Tau Ceti explode as well. (a) In the spaceship’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forward
- What happens to the density of an object as its speed increases, as measured by an Earth observer?arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardAn astronaut is traveling in a spacecraft in outer space in a straight line at a constant speed of 0.500c. Which of the following effects would she experience? (a) She would feel heavier, (b) She would find it harder to breath. (c) Her heart rate would change. (d) Some of the dimensions of her spacecraft would be shorter. (e) None of those answers is correct.arrow_forward
- An object having mass 900 kg and traveling at speed 0.850c collides with a stationary object having mass 1 400 kg. The two objects stick together. Find (a) the speed and (b) the mass of the composite object.arrow_forwardA spacecraft is launched from the surface of the Earth with a velocity of 0.600c at an angle of 50.0° above the horizontal, positive x-axis. Another spacecraft is moving past with a velocity of 0.700c in the negative x direction. Determine the magnitude and direction of the velocity of the first spacecraft as measured by the pilot of the second spacecraft.arrow_forwardAn observer in a rocket moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P1.30. The mirror is stationary with respect to S. A light pulse emitted by the rocket travels toward the mirror and is reflected back to the rocket. The front of the rocket is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the rocket. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the front of the rocket? Figure P1.30arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY