Concept explainers
The Very Large Array (VLA) is a set of 27 radio telescope dishes in Catron and Socorro counties, New Mexico (Fig. P37.37). The antennas can be moved apart on railroad tracks, and their combined signals give the resolving power of a synthetic aperture 36.0 km in diameter. (a) If the detectors are tuned to a frequency of 1.40 GHz, what is the angular resolution of the VLA? (b) Clouds of interstellar hydrogen
Figure P37.37
(a)
Answer to Problem 38.59AP
Explanation of Solution
Given info: The diameter of the aperture is
The formula to calculate the angular resolution is,
Here,
First calculate
Here,
Substitute
Thus, the wavelength is
From equation (3), substitute
Convert
Conclusion:
Therefore, the angular resolution is
(b)
Answer to Problem 38.59AP
Explanation of Solution
Given info: The distance between the clouds is
The formula to calculate the minimum separation between the clouds so that they can be well resolved is,
Here,
Substitute
Conclusion:
Therefore, the minimum separation between the two clouds required to have resolved image is
(c)
Answer to Problem 38.59AP
Explanation of Solution
Given info: The wavelength of the light to which hawk’s eye is sensitive is green light. The wavelength of the green light is
From equation (1) the formula to calculate the angular resolution is,
Here,
Substitute
Convert
Conclusion:
Therefore, angular resolution of the hawk’s eyes is
(d)
Answer to Problem 38.59AP
Explanation of Solution
Given info: The distance between the hawk and the mouse is
The formula to calculate the minimum separation between the mouse whiskers so that they can be well resolved is,
Here,
Substitute
Conclusion:
Therefore, the minimum separation between the two mouse whiskers so that hawk cans e them is
Want to see more full solutions like this?
Chapter 38 Solutions
PHYSICS 1250 PACKAGE >CI<
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning