The laser in a compact disc player must precisely follow the spiral track on CD, along which the distance between one loop of the spiral and the next is only about 1.25 µm. Figure P38.29 (page 1186) shows how a diffraction grating is used to provide information to keep the beam on track. The laser light passes through a diffraction grating before it reaches the CD. The strong central maximum of the diffraction pattern is used to read the information in the track of pits. The two first-order side maxima are designed to fall on the flat surfaces on both sides of the information track and are used for steering. As long as both beams are reflecting from smooth, nonpitted .surfaces, they are detected with constant high intensity. If the main beam wanders off the track, however, one of the side beams begins to strike pits on the information track and the reflected light diminishes. This change is used with an electronic circuit to guide the beam back to the desired location. Assume the laser light has a wavelength of 780 11m and the diffraction grating is positioned 6.90 µm from tike disk. Assume the first-order beams are to fall on the CD 0.400 µm on either side of the information track. What should be the number of grooves per millimeter in the grating?
The laser in a compact disc player must precisely follow the spiral track on CD, along which the distance between one loop of the spiral and the next is only about 1.25 µm. Figure P38.29 (page 1186) shows how a diffraction grating is used to provide information to keep the beam on track. The laser light passes through a diffraction grating before it reaches the CD. The strong central maximum of the diffraction pattern is used to read the information in the track of pits. The two first-order side maxima are designed to fall on the flat surfaces on both sides of the information track and are used for steering. As long as both beams are reflecting from smooth, nonpitted .surfaces, they are detected with constant high intensity. If the main beam wanders off the track, however, one of the side beams begins to strike pits on the information track and the reflected light diminishes. This change is used with an electronic circuit to guide the beam back to the desired location. Assume the laser light has a wavelength of 780 11m and the diffraction grating is positioned 6.90 µm from tike disk. Assume the first-order beams are to fall on the CD 0.400 µm on either side of the information track. What should be the number of grooves per millimeter in the grating?
The laser in a compact disc player must precisely follow the spiral track on CD, along which the distance between one loop of the spiral and the next is only about 1.25 µm. Figure P38.29 (page 1186) shows how a diffraction grating is used to provide information to keep the beam on track. The laser light passes through a diffraction grating before it reaches the CD. The strong central maximum of the diffraction pattern is used to read the information in the track of pits. The two first-order side maxima are designed to fall on the flat surfaces on both sides of the information track and are used for steering. As long as both beams are reflecting from smooth, nonpitted .surfaces, they are detected with constant high intensity. If the main beam wanders off the track, however, one of the side beams begins to strike pits on the information track and the reflected light diminishes. This change is used with an electronic circuit to guide the beam back to the desired location. Assume the laser light has a wavelength of 780 11m and the diffraction grating is positioned 6.90 µm from tike disk. Assume the first-order beams are to fall on the CD 0.400 µm on either side of the information track. What should be the number of grooves per millimeter in the grating?
Three moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression,
1900 J of work is done on the gas.
For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of
Entropy change in a free expansion.
Part A
What is the change of entropy of the gas?
ΤΕ ΑΣΦ
AS =
Submit
Request Answer
J/K
5.97 Block A, with weight
3w, slides down an inclined plane
S of slope angle 36.9° at a constant
speed while plank B, with weight
w, rests on top of A. The plank
is attached by a cord to the wall
(Fig. P5.97). (a) Draw a diagram
of all the forces acting on block
A. (b) If the coefficient of kinetic
friction is the same between A and
B and between S and A, determine
its value.
Figure P5.97
B
A
S
36.9°
Please take your time and solve each part correctly please. Thank you!!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.