Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 37P
(a)
To determine
The maximum slit separation.
(b)
To determine
The minimum slit separation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a single-slit diffraction experiment, there is a minimum of intensity for orange light (l= 600 nm) and a minimum of intensity for blue-green light (l = 500 nm) at the same angle of 1.00 mrad. For what minimum slit width is this possible?
Light of wavelength 613.0 nm is incident on a narrow slit. The diffraction pattern is viewed on a screen 81.5 cm from the slit. The distance on the screen between the fourth order minimum and the central maximum is 1.91 cm. What is the width ?a of the slit in micrometers (μm)?
A scientist directs monochromatic light toward a single slit in an opaque barrier. The light has a wavelength of 520 nm and the slit is 0.190 mm wide. The light that passes through the slit creates a diffraction pattern on a screen, which is 1.60 m from the slit.
How wide (in mm) is the central maximum (the central, bright fringe), as measured on the screen?
How wide (in mm) is either of the two first-order bright fringes, as measured on the screen?
Chapter 38 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 38.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 38.2 - Prob. 38.2QQCh. 38.3 - Cats eyes have pupils that can be modeled as...Ch. 38.3 - Suppose you are observing a binary star with a...Ch. 38.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38.6 - A polarizer for microwaves can be made as a grid...Ch. 38.6 - Prob. 38.7QQCh. 38 - Prob. 1OQCh. 38 - Prob. 2OQCh. 38 - Prob. 3OQ
Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardTable P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardConsider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forward
- A monochromatic light beam coming from a point source illuminates two parallel horizontal slits. The center of the two slits is a = 0.80 mm, as illustrated in the figure. An interference pattern is produced on a target at 50 cm. In this pattern, the dark and light fringes are equally spaced. The distance y1 is 0.304 mm.Calculate the wavelength of the incident light.arrow_forwardMonochromatic light from a laser is incident on a slit 0.53 mm wide. On a screen 2.97 m away from the slit, the distance between the first minima on either side of the central maximum is 3.98 mm. Determine the wavelength of light emitted by the laser Answer in units nm.arrow_forwardLight of wavelength 500 nm diffracts through a slit of width 2.00 mm and onto a screen that is 2.00 m away. On the screen, what is the distance between the center of the diffraction pattern and the third diffraction minimum?arrow_forward
- An instructor directs monochromatic light toward a single slit in an opaque barrier. The light has a wavelength of 550 nm and the slit is 0.230 mm wide. The light that passes through the slit creates a diffraction pattern on a screen, which is 1.65 m from the slit. (a) How wide (in mm) is the central maximum (the central, bright fringe), as measured on the screen? Single-slit diffraction is most readily described with a formula that gives the distance from the center of the pattern to the mth-order dark fringe. Consider the first dark fringe on either side of the central peak (m = ±1). How does its distance relate to the full width of the central maximum? Take care with units. mm (b) How wide (in mm) is either of the two first-order bright fringes, as measured on the screen? Single-slit diffraction is most readily described with a formula that gives the distance from the center of the pattern to the mth-order dark fringe. Consider two adjacent fringes on one side of the…arrow_forwardA laser beam is normally incident on a single slit with width 0.580 mm. A diffraction pattern forms on a screen a distance 1.20 m beyond the slit. The distance between the positions of zero intensity on both sides of the central maximum is 2.12 mm. Calculate the wavelength of the light (in nm). X Find the relationship among y, the distance from the central maximum to the first minimum, L, and 0, and then apply the equation for the Fraunhofer diffraction pattern. Solve for A. Hint: use a small-angle approximation. nmarrow_forwardA barrier contains 14 slits separated by 150.μm 150. μ m . The slits are illuminated by a monochromatic light source with a wavelength of 535 nm, and the interference pattern is projected on a screen 2.05 m from the barrier. (a) What is the distance, in centimeters, from the principal maximum to the first-order maximum? (b) What is the width, δy, in centimeters, of the principal maximum.arrow_forward
- The figure shows the interference pattern that appears on a distant screen when coherent light is incident on a mask with two identical, very narrow slits. Points P and Q are maxima; Point R is a minimum. The wavelength of the light that created the interference pattern is λ=678nm, the two slites are separated by rm d=6 μm, and the distance from the slits to the center of the screen is L=80cm . The difference in path length at a point on the screen is Δs=|s1−s2|, where s1s1 and s2s2 are the distances from each slit to the point. What is ΔsΔs (in nm) at Point P? What is ΔsΔs (in nm) at Point Q? What is ΔsΔs (in nm) at Point R?arrow_forwardIn a single-slit diffraction experiment, a coherent light source illuminates a slit in a barrier, and the resulting pattern is projected on a screen that is separated from the barrier by a distance that is very large as compared to the slit width and the wavelength of the light source. A student makes sketches of the resulting patterns. While the center of each bright or dark band is accurately represented, the shading is qualitative, and the choice of color may not reflect the wavelength of the light source. The distance from the barrier to the screen is 2.65m, and the slit has a width of 7.7μm.arrow_forwardAn instructor directs monochromatic light toward a single slit in an opaque barrier. The light has a wavelength of 550 nm and the slit is 0.225 mm wide. The light that passes through the slit creates a diffraction pattern on a screen, which is 1.20 m from the slit. (a) How wide (in mm) is the central maximum (the central, bright fringe), as measured on the screen? mm (b) How wide (in mm) is either of the two first-order bright fringes, as measured on the screen? mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY