
(a)
The fraction by which the transmitted intensity is reduced.
(a)

Answer to Problem 48P
The intensity will be reduced by
Explanation of Solution
Given info: The number of the polarizing filters is
Here,
When an unpolarized light is passed through a polarizing filter intensity is reduced to half. So after passing through the first polarizer the intensity of the light becomes half.
Here,
The angle between the transmission axis of second polarizer and the first polarizer is
Here,
The third polarizing filter and the second polarizing filter has the same
Therefore the final intensity after three polarizing filters is,
Substitute
Substitute
From equation (5), a general formula for the calculation of intensity when light is passed through
Here,
Substitute
Therefore the absorbed intensity is
Conclusion:
Therefore, the fraction by which the intensity is reduced is
(b)
The fraction by which intensity is reduced when
(b)

Answer to Problem 48P
The fraction by which the intensity is reduced is
Explanation of Solution
Given info: The number of filters are
From equation (6) the formula to calculate when there are
Substitute
Therefore the absorbed intensity is
Conclusion:
Therefore, The fraction by which the intensity is reduced is
(c)
The fraction by which intensity is reduced when
(c)

Answer to Problem 48P
The fraction by which the intensity is reduced is
Explanation of Solution
Given info: The number of filters are
From equation (6) the formula to calculate when there are
Substitute
Therefore the absorbed intensity is
Conclusion:
Therefore, the fraction by which the intensity is reduced is
(d)
The comparison between answer of part (a), (b) and (c).
(d)

Answer to Problem 48P
The intensity of light can be increased by increasing the number of stacks of polarizing filters by decreasing the angle between their transmission axis.
Explanation of Solution
From equation (7), (8) and (9), it is evident that, as the number of polarizing filters increased the fraction of absorbed was decreased. For the case of
Conclusion:
Therefore, the intensity of light can be increased by increasing the number of stacks of polarizing filters by decreasing the angle between their transmission axis.
Want to see more full solutions like this?
Chapter 38 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





