
Concept explainers
(a)
The width of aperture.
(a)

Answer to Problem 4P
The width of aperture is
Explanation of Solution
On looking at the figure P38.4, width of the rectangular patch is more than that of its height.
Write the equation for tangent of angular width of aperture.
Here,
Since
Write the relation between width of aperture and the wavelength of light used for first order diffraction pattern.
Here,
Conclusion:
Substitute
Substitute
Rewrite the above expression in terms of
Therefore, the width of aperture is
(b)
The height of aperture.
(b)

Answer to Problem 4P
The height of aperture is
Explanation of Solution
On looking at the figure P38.4, width of the rectangular patch is more than that of its height.
Write the equation for tangent of angular width of aperture.
Here,
Since
Write the relation between width of aperture and the wavelength of light used for first order diffraction pattern.
Here,
Conclusion:
Substitute
Substitute
Rewrite the above expression in terms of
Therefore, the height of aperture is
(c)
Check whether the horizontal or vertical dimension of central bright portion is greater.
(c)

Answer to Problem 4P
Horizontal dimension of central bright portion is longer than its vertical dimension.
Explanation of Solution
Draw the diagram showing the diffraction pattern on light passing through a circular aperture.
From the diagram, it can be seen that the central bright patch has an ellipse shape. It has greater length in horizontal direction than in vertical direction.
Therefore, the horizontal dimension of central bright portion is longer than its vertical dimension.
(d)
Check whether the horizontal or vertical dimension of aperture is greater.
(d)

Answer to Problem 4P
Vertical dimension of aperture is greater.
Explanation of Solution
Refer the diagram shown in part (c). From the diagram, it is understood that to obtain diffraction pattern with greater horizontal dimension its vertical length, the vertical length of aperture must be greater than that of horizontal length. If the horizontal dimension of aperture is greater, the vertical dimension of bright becomes greater than that of the horizontal dimension.
Therefore, the vertical dimension of aperture is greater.
(e)
Identify the relation between the two rectangles given in question with the help of a diagram.
(e)

Answer to Problem 4P
The distances between edges of rectangular aperture is inversely proportional to size of central maxima rectangle on the wall.
Explanation of Solution
Refer the figure 1shown in part (c). The size of aperture is inversely proportional to the size of diffraction pattern. Smaller the size of aperture, larger will be the size of diffraction pattern. It is found that the width of aperture is
Therefore, the distances between edges of rectangular aperture is inversely proportional to size of central maxima rectangle on the wall.
Want to see more full solutions like this?
Chapter 38 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- # E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forwardShow work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forward
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forwardIn the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forward
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





