
Concept explainers
(a)
To find: The type of variation that describes the relationship between torque, mass and distance. Explain.
(a)

Answer to Problem 35E
Explanation of Solution
Given information: Physics: If you have observed people on a seesaw, you may have noticed that the heavier person must sit closer to the fulcrum for the seesaw to balance. In doing so, the heavier participant creates a rotational force, called torque. The torque on the end of a seesaw depends on the mass of the person and his or her distance from the seesaw’s fulcrum. In order to reduce torque, one must either reduce the distance between the person and the fulcrum or replace the person with someone having a smaller mass.
Calculation:
T varies jointly as D and M
(b)
To derive: An equation that represents this seesaw in balance, if
(b)

Answer to Problem 35E
Explanation of Solution
Given information: Physics: If you have observed people on a seesaw, you may have noticed that the heavier person must sit closer to the fulcrum for the seesaw to balance. In doing so, the heavier participant creates a rotational force, called torque. The torque on the end of a seesaw depends on the mass of the person and his or her distance from the seesaw’s fulcrum. In order to reduce torque, one must either reduce the distance between the person and the fulcrum or replace the person with someone having a smaller mass.
Calculation:
In order for the seesaw to be in balance, the Force on the left side must equal the force on the other side.
F = (mass) (distance from fulcrum)
(c)
To find: The distance the babysitter should sit from the pivot in order to balance the seesaw using the equation found in part b, is a 75-pound child and a 125-pound babysitter sit at either end of a seesaw. The child sits 3.3 meters from the fulcrum.
(c)

Answer to Problem 35E
Explanation of Solution
Given information: Physics: If you have observed people on a seesaw, you may have noticed that the heavier person must sit closer to the fulcrum for the seesaw to balance. In doing so, the heavier participant creates a rotational force, called torque. The torque on the end of a seesaw depends on the mass of the person and his or her distance from the seesaw’s fulcrum. In order to reduce torque, one must either reduce the distance between the person and the fulcrum or replace the person with someone having a smaller mass.
Calculation:
T varies jointly as D and M
Replace the values of T, K, M in the equation to find distance D
Chapter 3 Solutions
Advanced Mathematical Concepts: Precalculus with Applications, Student Edition
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Introductory Statistics
Elementary Statistics: Picturing the World (7th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
- (14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk.arrow_forward6. Solve the system of differential equations using Laplace Transforms: x(t) = 3x₁ (t) + 4x2(t) x(t) = -4x₁(t) + 3x2(t) x₁(0) = 1,x2(0) = 0arrow_forward3. Determine the Laplace Transform for the following functions. Show all of your work: 1-t, 0 ≤t<3 a. e(t) = t2, 3≤t<5 4, t≥ 5 b. f(t) = f(tt)e-3(-) cos 4τ drarrow_forward
- 4. Find the inverse Laplace Transform Show all of your work: a. F(s) = = 2s-3 (s²-10s+61)(5-3) se-2s b. G(s) = (s+2)²arrow_forward1. Consider the differential equation, show all of your work: dy =(y2)(y+1) dx a. Determine the equilibrium solutions for the differential equation. b. Where is the differential equation increasing or decreasing? c. Where are the changes in concavity? d. Suppose that y(0)=0, what is the value of y as t goes to infinity?arrow_forward2. Suppose a LC circuit has the following differential equation: q'+4q=6etcos 4t, q(0) = 1 a. Find the function for q(t), use any method that we have studied in the course. b. What is the transient and the steady-state of the circuit?arrow_forward
- 5. Use variation of parameters to find the general solution to the differential equation: y" - 6y' + 9y=e3x Inxarrow_forwardLet the region R be the area enclosed by the function f(x) = ln (x) + 2 and g(x) = x. Write an integral in terms of x and also an integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth. 5 4 3 2 1 y x 1 2 3 4arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward
- (14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk. = (a) (4 points) What is the boundary OS? Explain briefly. (b) (4 points) Let F(x, y, z) = (e³+2 - 2y, xe³±² + y, e²+y). Calculate the curl V × F.arrow_forward(6 points) Let S be the surface z = 1 − x² - y², x² + y² ≤1. The boundary OS of S is the unit circle x² + y² = 1. Let F(x, y, z) = (x², y², z²). Use the Stokes' Theorem to calculate the line integral Hint: First calculate V x F. Jos F F.ds.arrow_forward(28 points) Define T: [0,1] × [−,0] → R3 by T(y, 0) = (cos 0, y, sin 0). Let S be the half-cylinder surface traced out by T. (a) (4 points) Calculate the normal field for S determined by T.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





