Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 45AP
To determine
The nearest point where two beams are in phase.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Radio transmitter A operating at 60.0 MHz is 10.0 m from another similar transmitter B that is 180° out of phase with A. How far must an observer move from A toward B along the line connecting the two transmitters to reach the nearest point where the two beams are in phase?
From your spacecraft at Mars, a basalt lava flow is 315 km below. a)
What is the range delay time of the reflection caused by the ground? b)
After moving along track in your orbit, the lava flow is still 315 km below,
but there is now 80 m of ice (ɛ=3.15) on top of the ground. What is the
new range delay time of the lava reflection? c) Does the returned signal
return earlier or later than if there were no ice present? Why?
5:
A circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 18.0 GHz. Two small boats are located 5.00 km away from the ship. How close together could the boats be and still be detected as two objects?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider two EM waves of the same frequency. One (f1) has three times the amplitude of the other (f2). What is the ratio of the energies contained within the waves? Express your answer as a ration, i.e., 5/2, 6/1, etc.arrow_forwardTwo separate coherent sources with distance produce identical sound waves of wavelength 2.0 [m] that are in phase. Source 1 is at the (0, 0) and Source 2 is at (6.0 [m], 0). If an observer stands at (6.0 [m], 8.0 [m]) in front of the sources, what will be the path difference and how would the sound waves interfere at that point?arrow_forwardApproximately how long does it take a light wave to travel from your head to your toes? Assume you are standing straight up.arrow_forward
- A radio station has two antennas. The antennas are a distance d apart, where d equals half the broadcast wavelength. The antennas are driven in phase with each other. Let the x-axis be the line that runs through the two antennas. The angles are all measured counterclockwise from the +x-direction. (For the following, assume an observer is positioned a distance D far from the midpoint of the antennas, so that D ≫ d.) (a) In which directions is the strongest signal radiated? 0°, 180° 90°, 270° 0°, 90°, 180°, 270° 45°, 135°, 225°, 315° (b) In which directions is the weakest signal radiated? 0°, 180° 90°, 270° 0°, 90°, 180°, 270° 45°, 135°, 225°, 315°arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forwardConsider two sources of coherent EM waves with frequency f=2.8x1014 in vacuum. The path difference between the two waves is 3.50. What is the phase difference between the two waves?arrow_forward
- Given once SpaceX's StarLink can provide global internet by sending light between satellites in space, what is the expected time delay for a Whatsapp call from Indianapolis to London which is about 6416 km apart? In other words, how long does light need to travel between Indianapolis and London? µs = 1 × 10¬°s, ms = 1 × 10¬³s tdelay = 2.14µs tdelay = 2.14ms %3D tdelay = 214µs O tdelay = 2.14s %3Darrow_forwardHandwrittenarrow_forwardYou're inside a metal building that blocks radio waves, but you're trying to make a call with your cell phone, which broadcasts at a frequency of 950 MHz. Down the hall from you is a narrow win- dow measuring 35 cm wide. What's the horizontal angular width of the beam (i.e., the angle between the first minima) from your phone as it emerges from the window?arrow_forward
- Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20 m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the waves arriving at P from antennas A and B? A P X B 4.594x10-¹ rad Computer's answer now shown above. You are correct. Your receipt no. is 158-6031 > Previous Tries Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves? 1.203 m As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference? Submit Answer Tries 0/6 Submit Answer Incorrect. Tries 1/6 Previous Tries If observer P continues walking until he reaches antenna A, at how many places along the x…arrow_forward(b) Calculate the output Vout across points C and D in Fig. Q1(b). R1 802 R3 4802 100V i Vout D R2 1202 R4 1602 Fig. Q1(b)arrow_forwardTwo light pulses are emitted simultaneously from a source. Both pulses travel to a detector, but one first passes through 6.30 m of ice. Determine the difference in the pulses' times of arrival at the detector.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY