Average and marginal profit Let C(x) represent the cost of producing x items and p(x) be the sale price per item if x items are sold. The profit P(x) of selling x items is P(x) = x p(x) − C(x) (revenue minus costs). The average profit per item when x items are sold is P(x)/x and the marginal profit is dP/dx. The marginal profit approximates the profit obtained by selling one more item given that x items have already been sold. Consider the following cost functions C and price functions p.
- a. Find the profit function P.
- b. Find the average profit function and marginal profit function.
- c. Find the average profit and marginal profit if x = a units are sold.
- d. Interpret the meaning of the values obtained in part (c).
39. C(x) = −0.04x2 + 100x + 800, p(x) = 200, a = 1000
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
College Algebra (7th Edition)
Elementary Statistics
Algebra and Trigonometry (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- (b) For each of the following sets, 6 is an element of that set. (i) {x ER|x is an integer greater than 1} (ii) {x ЄR|x is the cube of an integer} (iii) {6, {6}} (iv) {{6},{6, {6}}} (v) {{{2}}}arrow_forwardQuestion 1 Reverse the order of integration to calculate .8 .2 A = = So² Son y1/3 cos² (x²) dx dy. Then the value of sin(A) is -0.952 0.894 0.914 0.811 0.154 -0.134 -0.583 O 0.686 1 ptsarrow_forward3 Calculate the integral approximations T and M6 for 2 x dx. Your answers must be accurate to 8 decimal places. T6= e to search M6- Submit answer Next item Answers Answer # m 0 T F4 F5 The Weather Channel UP DELL F6 F7 % 5 olo in 0 W E R T A S D F G ZX C F8 Score & 7 H FO F10 8 の K B N Marrow_forward
- Start with a circle of radius r=9. Form the two shaded regions pictured below. Let f(6) be the area of the shaded region on the left which has an arc and two straight line sides. Let g(6) be the area of the shaded region on the right which is a right triangle. Note that the areas of these two regions will be functions of 6; r=9 is fixed in the problem. 0 f(0) (a) Find a formula for f(6)= | | (b)Find a formula for g(6)= lim ƒ (6) (c) 80 = lim g (0) (d) 80 = lim (e) [f(8)/g(6)]= 0 g(0)arrow_forwardMy teacher's answer is: 4a⁷b⁶arrow_forwardExplain to me why the answer is: 4a⁷b⁶ if not then defend yoursarrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning