One-sided derivatives The right-sided and left-sided derivatives of a function at a point a are given by f + ′ ( a ) = lim h → 0 + f ( a + h ) − f ( a ) h a n d f − ′ ( a ) = lim h → 0 − f ( a + h ) − f ( a ) h , respectively, provided these limits exist. The derivative f ′( a ) exists if and only if f + ′( a ) = f − ′( a ) . a. Sketch the following functions. b. Compute f + ′( a ) and f − ′( a ) at the given point a. c. Is f continuous at a? Is f differentiable at a? 31. f ( x ) = | x − 2|; a = 2
One-sided derivatives The right-sided and left-sided derivatives of a function at a point a are given by f + ′ ( a ) = lim h → 0 + f ( a + h ) − f ( a ) h a n d f − ′ ( a ) = lim h → 0 − f ( a + h ) − f ( a ) h , respectively, provided these limits exist. The derivative f ′( a ) exists if and only if f + ′( a ) = f − ′( a ) . a. Sketch the following functions. b. Compute f + ′( a ) and f − ′( a ) at the given point a. c. Is f continuous at a? Is f differentiable at a? 31. f ( x ) = | x − 2|; a = 2
One-sided derivativesThe right-sided and left-sided derivatives of a function at a point a are given by
f
+
′
(
a
)
=
lim
h
→
0
+
f
(
a
+
h
)
−
f
(
a
)
h
a
n
d
f
−
′
(
a
)
=
lim
h
→
0
−
f
(
a
+
h
)
−
f
(
a
)
h
,
respectively, provided these limits exist. The derivative f′(a) exists if and only if f+′(a) = f−′(a).
a.Sketch the following functions.
b.Compute f+′(a) and f−′(a) at the given point a.
c.Is f continuous at a? Is f differentiable at a?
31.f(x) = |x − 2|; a = 2
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Write the given third order linear equation as an equivalent system of first order equations with initial values.
Use
Y1 = Y, Y2 = y', and y3 = y".
-
-
√ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t²
\y(3) = 1, y′(3) = −2, y″(3) = −3
(8) - (888) -
with initial values
Y
=
If you don't get this in 3 tries, you can get a hint.
Question 2
1 pts
Let A be the value of the triple integral
SSS.
(x³ y² z) dV where D is the region
D
bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0.
Then the value of sin(3A) is
-0.003
0.496
-0.408
-0.420
0.384
-0.162
0.367
0.364
Chapter 3 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.