Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 42P
An object’s distance from a converging lens is 5.00 times the focal length. (a) Determine the location of the image. Express the answer as a fraction of the focal length. (b) Find the magnification of the image and indicate whether it is (c) upright or inverted and (d) real or virtual.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 36 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 36.1 - Prob. 36.1QQCh. 36.2 - You wish to start a fire by reflecting sunlight...Ch. 36.2 - Consider the image in the mirror in Figure 35.14....Ch. 36.3 - Prob. 36.4QQCh. 36.3 - Prob. 36.5QQCh. 36.4 - What is the focal length of a pane of window...Ch. 36.6 - Prob. 36.7QQCh. 36.7 - Prob. 36.8QQCh. 36 - Prob. 1OQCh. 36 - Prob. 2OQ
Ch. 36 - Prob. 3OQCh. 36 - Prob. 4OQCh. 36 - Prob. 5OQCh. 36 - Prob. 6OQCh. 36 - Prob. 7OQCh. 36 - Prob. 8OQCh. 36 - Prob. 9OQCh. 36 - Prob. 10OQCh. 36 - Prob. 11OQCh. 36 - Prob. 12OQCh. 36 - Prob. 13OQCh. 36 - Prob. 14OQCh. 36 - Prob. 1CQCh. 36 - Prob. 2CQCh. 36 - Prob. 3CQCh. 36 - Prob. 4CQCh. 36 - Prob. 5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 7CQCh. 36 - Prob. 8CQCh. 36 - Prob. 9CQCh. 36 - Prob. 10CQCh. 36 - Prob. 11CQCh. 36 - Prob. 12CQCh. 36 - Prob. 13CQCh. 36 - Prob. 14CQCh. 36 - Prob. 15CQCh. 36 - Prob. 16CQCh. 36 - Prob. 17CQCh. 36 - Prob. 1PCh. 36 - Prob. 2PCh. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Prob. 7PCh. 36 - Prob. 8PCh. 36 - Prob. 9PCh. 36 - Prob. 10PCh. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - Prob. 14PCh. 36 - Prob. 15PCh. 36 - Prob. 16PCh. 36 - Prob. 17PCh. 36 - Prob. 18PCh. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - A concave spherical mirror has a radius of...Ch. 36 - Prob. 23PCh. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - Prob. 30PCh. 36 - Prob. 31PCh. 36 - Prob. 32PCh. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - A simple model of the human eye ignores its lens...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71APCh. 36 - Prob. 72APCh. 36 - Prob. 73APCh. 36 - The distance between an object and its upright...Ch. 36 - Prob. 75APCh. 36 - Prob. 76APCh. 36 - Prob. 77APCh. 36 - Prob. 78APCh. 36 - Prob. 79APCh. 36 - Prob. 80APCh. 36 - Prob. 81APCh. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 83APCh. 36 - Prob. 84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Prob. 86APCh. 36 - Prob. 87APCh. 36 - Prob. 88APCh. 36 - Prob. 89APCh. 36 - Prob. 90APCh. 36 - Prob. 91APCh. 36 - Prob. 92APCh. 36 - Prob. 93CPCh. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Prob. 95CPCh. 36 - Prob. 96CPCh. 36 - Prob. 97CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardHow far should you hold a 2.1 cm-focal length magnifying glass from an object to obtain a magnification of 10 x ? Assume you place your eye 5.0 cm from the magnifying glass.arrow_forward
- You view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forwardWhat is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forwardAu object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Fluid the location and size of the final image.arrow_forward
- A convex mirror with a radius of curvature of 25.0 cm is used to form an image of an arrow that is 10.0 cm away from the mirror. If the arrow is 2.00 cm tall and inverted (pointing below the optical axis), what is the height of the arrows image?arrow_forwardWhat is the focal length of a magnifying glass that produces a magnification of 3.00 when held 5.00 cm from an object, such as a rare coin?arrow_forwardA converging lens has a focal length of 20.0 cm. Locate the image for object distances of (a) 40.0 cm, (b) 20.0 cm, and (c) 10.0 cm. For each case, state whether the image is real or virtual and upright or inverted. Find the magnification in each case.arrow_forward
- The left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forwardA converging lens has a focal length of 10.0 cm. Locate the object if a real image is located at a distance from the lens of (a) 20.0 cm and (b) 50.0 cm. What If? Redo the calculations if the images are virtual and located at a distance from the lens of (c) 20.0 cm and (d) 50.0 cm.arrow_forwardAn object viewed with the naked eye subtends a 2° angle. If you view the object through a 10 x magnifying glass, what angle is subtended by the image formed on your retina?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY