Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 15P
To determine
The location where sound is concentrated after reflection from niche.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A large hall in a museum has a niche in one wall. On the floor plan, the niche appears as a semicircular indentation of radius 2.50 m. A tourist stands on the centerline of the niche, 2.00 m out from its deepest point, and whispers “Hello.” Where is the sound concentrated after reflection from the niche?
A large hall in a museum has a niche in one wall. On the floor plan, the niche appears as a semicircular indentation of radius 2.65 m. A tourist stands on the centerline of the niche, 2.41 m out from its deepest point, and whispers "Hello." Where is the
sound concentrated after reflection from the niche?
m from the deepest point in the niche
Need Help?
Read It
You sight along the rim of a glass with vertical sides so that the top rim is lined up with the opposite edge of the bottom (Fig.a). The glass is a thin-walled, hollow cylinder 16.0 cm high. The diameter of the top and bottom of the glass is 8.0 cm. While you keep your eye in the same position, a friend fills the glass with a transparent liquid, and you then see a dime that is lying at the center of the bottom of the glass (Fig.b). What is the index of refraction of the liquid?
Chapter 36 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 36.1 - Prob. 36.1QQCh. 36.2 - You wish to start a fire by reflecting sunlight...Ch. 36.2 - Consider the image in the mirror in Figure 35.14....Ch. 36.3 - Prob. 36.4QQCh. 36.3 - Prob. 36.5QQCh. 36.4 - What is the focal length of a pane of window...Ch. 36.6 - Prob. 36.7QQCh. 36.7 - Prob. 36.8QQCh. 36 - Prob. 1OQCh. 36 - Prob. 2OQ
Ch. 36 - Prob. 3OQCh. 36 - Prob. 4OQCh. 36 - Prob. 5OQCh. 36 - Prob. 6OQCh. 36 - Prob. 7OQCh. 36 - Prob. 8OQCh. 36 - Prob. 9OQCh. 36 - Prob. 10OQCh. 36 - Prob. 11OQCh. 36 - Prob. 12OQCh. 36 - Prob. 13OQCh. 36 - Prob. 14OQCh. 36 - Prob. 1CQCh. 36 - Prob. 2CQCh. 36 - Prob. 3CQCh. 36 - Prob. 4CQCh. 36 - Prob. 5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 7CQCh. 36 - Prob. 8CQCh. 36 - Prob. 9CQCh. 36 - Prob. 10CQCh. 36 - Prob. 11CQCh. 36 - Prob. 12CQCh. 36 - Prob. 13CQCh. 36 - Prob. 14CQCh. 36 - Prob. 15CQCh. 36 - Prob. 16CQCh. 36 - Prob. 17CQCh. 36 - Prob. 1PCh. 36 - Prob. 2PCh. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Prob. 7PCh. 36 - Prob. 8PCh. 36 - Prob. 9PCh. 36 - Prob. 10PCh. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - Prob. 14PCh. 36 - Prob. 15PCh. 36 - Prob. 16PCh. 36 - Prob. 17PCh. 36 - Prob. 18PCh. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - A concave spherical mirror has a radius of...Ch. 36 - Prob. 23PCh. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - Prob. 30PCh. 36 - Prob. 31PCh. 36 - Prob. 32PCh. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - A simple model of the human eye ignores its lens...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71APCh. 36 - Prob. 72APCh. 36 - Prob. 73APCh. 36 - The distance between an object and its upright...Ch. 36 - Prob. 75APCh. 36 - Prob. 76APCh. 36 - Prob. 77APCh. 36 - Prob. 78APCh. 36 - Prob. 79APCh. 36 - Prob. 80APCh. 36 - Prob. 81APCh. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 83APCh. 36 - Prob. 84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Prob. 86APCh. 36 - Prob. 87APCh. 36 - Prob. 88APCh. 36 - Prob. 89APCh. 36 - Prob. 90APCh. 36 - Prob. 91APCh. 36 - Prob. 92APCh. 36 - Prob. 93CPCh. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Prob. 95CPCh. 36 - Prob. 96CPCh. 36 - Prob. 97CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Curved glassair interfaces like those observed in an empty shot glass make it possible for total internal reflection to occur at the shot glasss internal surface. Consider a glass cylinder (n = 1.54) with an outer radius of 2.50 cm and an inner radius of 2.00 cm as shown in Figure P38.105. Find the minimum angle i such that there is total internal reflection at the inner surface of the shot glass. FIGURE P38.105 Problems 105 and 106.arrow_forwardA glass tumbler having inner depth of 17.5 cm is kept on a table. A student starts pouring water (μ 4/3) into it while looking at the surface of water from the above. When he feels that the = tumbler is half filled, he stops pouring water. Up to what height, the tumbler is actually filled ?arrow_forward(a) An opaque cylindrical tank with an open top has a diameter of 2.65 m and is completely filled with water. When the afternoon sun reaches an angle of 31.0° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank (in m)? m (b) What If? On winter solstice in Seattle, the sun reaches a maximum altitude of 19° above the horizon. What would the depth of the tank have to be (in m) for the sun not to illuminate the bottom of the tank on that day? marrow_forward
- (a) An opaque cylindrical tank with an open top has a diameter of 3.10 m and is completely filled with water. When the afternoon sun reaches an angle of 30.0° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank (in m)? m (b) What If? On winter solstice in Honolulu, the sun reaches a maximum altitude of 45.3° above the horizon. What would the depth of the tank have to be (in m) for the sun not to illuminate the bottom of the tank on that day?arrow_forwardA beaker has a height of 50.0 cm. The lower half of the beaker is filled with water, and the upper half is filled with oil (n=1.48). To a person looking down into the beaker from above, what is the apparent depth of the bottom?arrow_forwardTo dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. Ignore the effect of the thin glass walls of the bowl; take only the water into consideration. (Assume the index of refraction of water is 1.33 and the index of refraction of air is 1.00.) (a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer. M. min M max = =arrow_forward
- To dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. Ignore the effect of the thin glass walls of the bowl; take only the water into consideration. (Assume the index of refraction of water is 1.33 and the index of refraction of air is 1.00.) (a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer. = 0.2 M M min max Combine the equations for the formation of an image for a curved refracting surface and its magnification. 0.33 x Combine the…arrow_forwardTo dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. Ignore the effect of the thin glass walls of the bowl; take only the water into consideration. (Assume the index of refraction of water is 1.33 and the index of refraction of air is 1.00.) (a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer. Mmin M. max = (b) Your roommate also asks you if the fish might be baked if it swims through a point at which the rays of the Sun focus at some point…arrow_forwardOne end of the strip of a plane mirror is fixed and the other end rests on the top of the small vertical rod. The length of the plane mirror strip is 25cm. A ray of light is incident on the mirror and reflected from the mirror and forms a spot on a screen 3m away from the mirror. Now, if the top of the rod is moved upwards 0.1 mm, then what will be movement of the spot? A 0.24 cm B 3.4 cm 5 cm 4.5 cmarrow_forward
- To dress up your dorm room, you have purchased a perfectly spherical glass fishbowl to place on the windowsill. After placing the sand, decorations, and water in the bowl of diameter 40.0 cm, you transfer a single tropical fish from a plastic bag into the bowl. As you watch the fish, your roommate comes home. He watches the fish also and notices that the apparent size of the fish changes as it swims around in the bowl. (a) He is not taking a physics course, so he asks you to tell him the range of magnifications of the fish as it swims along a line from the back of the bowl along a line passing through the center of the bowl directly toward the observer. (b) Your roommate also asks you if the fish might be baked if it swims through a point at which the rays of the Sun focus at some point as they pass through the curved sides of the bowl. Should you worry aboutyour fish being baked? Ignore the effect of the thin glass walls of the bowl; take only the water into consideration.arrow_forwardAn cylindrical opaque drinking glass has a diameter 4 cm and height h, as shown in the figure. An observer's eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.15. KRI Oi Calculate the angle 0,. Answer in units of degrees. eyearrow_forwardA person swimming underwater on a bright day and lookingup at the surface will see a bright circle surrounded by relativedarkness as in Figure P22.61a, a phenomenon known asSnell’s window. Use the concept of total internal reflectionand the illustration in Figure P22.61b to show that Θ = 97.2°for the cone containing Snell’s window.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY