Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 19QLP
To determine
What is the consequence of setting lower and upperspecifications closer to the peak of the curve in Fig. 36.4?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical workpiece of 100mm diameter and 150mm in height (Fig. 1) is upset (open
die forged) at 1200° C to 100mm height disk (Fig. 2). Material of the workpiece is low
carbon steel. A graphite lubricant reduces the friction to u=0.25. A press with 2-m/sec
speeds is used to make this part. At 1200° C the material has the values for its
C=48MPA and m=0.08
parameters
Fig. 1 Height=150mm, Diameter=100mm
Fig. 2 Height = 100mm, Diamete =
?
mm
(a)
(b)
(c)
Determine the final diameter of the disk (see Fig. 2)
Determine the true strain rate at the end of process.
Calculate the flow stress at the end of the stroke.
The symmetrical cup workpiece shown in Fig. P. 6.10.2 is to
be made from cold rolled steel 0.8 mm thick. Make the
necessary calculations for designing the drawing die for this
part.
50
0.8
50
1.6R
2) Drawing: A round rod of annealed 302 stainless steel (K = 1300 MPa and n = 0.3) is being drawn
from a diameter of 15 mm to a diameter of 12 mm at a speed 0.25 m/s, using a semidie angle of 8º.
a. Calculate the percentage reduction, the applied force due to ideal deformation, friction, and
inhomogeneous deformation. Assume coefficient of friction of 0.1.
b. Calculate the required power, process efficiency, and the die pressure at the exit.
Chapter 36 Solutions
Manufacturing Engineering & Technology
Ch. 36 - Define the terms sample size, random sampling,...Ch. 36 - What are chance variations?Ch. 36 - Prob. 3RQCh. 36 - Define standard deviation. Why is it important...Ch. 36 - Describe what is meant by statistical process...Ch. 36 - When is a process out of control? Explain.Ch. 36 - Explain why control charts are developed. How...Ch. 36 - What is a loss function? How is it used?Ch. 36 - What do control limits indicate?Ch. 36 - Prob. 10RQ
Ch. 36 - What is acceptance sampling? Why was it developed?Ch. 36 - Prob. 12RQCh. 36 - What is meant by six-sigma quality?Ch. 36 - Prob. 14RQCh. 36 - Prob. 15RQCh. 36 - Give three methods of nondestructive testing...Ch. 36 - Explain why major efforts are continually being...Ch. 36 - Prob. 18QLPCh. 36 - Prob. 19QLPCh. 36 - Prob. 20QLPCh. 36 - Prob. 21QLPCh. 36 - Prob. 22QLPCh. 36 - What are the advantages of automated...Ch. 36 - Prob. 24QLPCh. 36 - Prob. 25QLPCh. 36 - Explain why GO and NOT GO gages (see Section...Ch. 36 - Prob. 27QLPCh. 36 - Prob. 28QLPCh. 36 - Prob. 29QLPCh. 36 - Prob. 31QLPCh. 36 - Beverage-can manufacturers try to achieve failure...Ch. 36 - Assume that in Example 36.3 the number of samples...Ch. 36 - Calculate the control limits for averages and...Ch. 36 - Calculate the control limits for (a) number of...Ch. 36 - In an inspection with a sample size of 12 and a...Ch. 36 - Prob. 37QTPCh. 36 - The average of averages of a number of samples of...Ch. 36 - Prob. 39QTPCh. 36 - Prob. 40QTPCh. 36 - Prob. 41SDPCh. 36 - Describe your thought on whether products should...Ch. 36 - Prob. 44SDPCh. 36 - Prob. 45SDPCh. 36 - Prob. 46SDPCh. 36 - Prob. 47SDPCh. 36 - Prob. 48SDPCh. 36 - Many components of products have a minimal effect...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 15 A cylindrical workpiece is forged in an open die. The workpiece is 60 mm in diameter and 30 mm high. The height after forging is 15 mm. The coefficient of friction at the die-work interface is 0.20. The flow curve equation for the workpiece is defined as, 0 = 800 80.2 where o is in MPa. The forging force (in MN) at the end of the stroke is closest toarrow_forward6. You have been consulted to design a draw die system for a wire production facility. The starting diameter is 3.0 mm and velocity is 5 m/s. The final diameter is 1.55 mm. Area reduction in drawing (r) is guided by the formula A, – Af Ao where A,=original area of work and AFfinal area. The upper limits for r are 0.50 for single-draft bar drawing and 0.30 for multiple-draft wire drawing respectively. Sketch the draw die system with all applicable system values/measurements incorporated. Assume no changes in volume due to forming.arrow_forward7. A strip of annealed low-carbon steel (K = 528 MPa, n = 0.25) is rolled from its initial dimensions (210 mm wide and 13 mm thick) to a thickness of 7 mm. The rollers have a radius of 250 mm, the roller rotates at 200 rpm, and u = 0.1. Compare this high frictional force and power with the low frictional (u = 0) forces and power. a. Estimate the roll force and power required for this process.arrow_forward
- 3) Forging: A cylindrical specimen made of annealed 4135 steel (K = 1015 MPa, n = 0.17) has a diameter of 150 mm, and is 100 mm high. It is upset between dies to a height of 50 mm at room temperature. Calculate the work done for 2 cases: a) Ideal (frictionless) b) Friction, where the coefficient of friction is 0.2. Set up on paper and solve using software. Be careful with units.arrow_forwardIn a sheet metal forming press, the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance of 30 cm. The production rate required is 240 components/hr. Calculate and suggest the following specifications of the various hydraulic components used: a. Hydraulic cylinder (bore & length); b. Pump pressure and flow rate; c. Electric motor HP considering 75% pump efficiency; d. Reservoir size; and e. Size of pump inlet and discharge tubing.arrow_forwardIn your own words, state and justify your assumptions and comment on your working.Marks will be assigned for the quality of the presentation of the working and od the comments.arrow_forward
- A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.arrow_forward• In a sheet metal forming press the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance of 30 cm. The production rate required is 240 components/hr. Calculate and suggest the following specifications of the various hydraulic components used: a) Hydraulic cylinder (bore & length) b) Pump pressure and flow rate c) Electric motor HP considering 75% pump efficiency d) Reservoir size e) Size of pump inlet and discharge tubingarrow_forwardComplete the following comparison table with the possible answers indicated in each comparison factor:arrow_forward
- A compound die will be used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 3.50 mm thick. The outside diameter of the washer is 50.0 mm and the inside diameter is 15.0 mm. Determine (a) the punch and die sizes for the blanking operation, and (b) the punch and die sizes for the punching operation Vallue for allowance = 0.060arrow_forwardEstimate the power for annealed low carbon steel strip 200 mm wide and 10 mm thick, rolled to a thickness of 6 mm. The roll radius is 200 mm, and the roll rotates at 200 rev/min; use coefficient of friction at the die-work interface (p)=0.1. A low carbon steel such as AISI 1020 has K (strength coefficient) = 530 MPa and n ( strain hardening exponent) =0.26a)1059 kWb)950 kWc)1183 kWd)875 kWarrow_forwardLow carbon steel plate that is 1.65 inches thick is to be rolled down to 1.3 inches in a single pass. The plate gets 4% wider as the thickness gets smaller. The steel plate has a 174 MPa yield strength and a 290 MPa tensile strength. The plate enters at a pace of 0.6 inches per minute. The rotating speed is 49.0 rev/min, and the roll radius is 12.8 inches. Calculate: a) Determine the minimum required coefficient of friction that would make this rolling operation possible b) exit velocity of the plate (m/min) c) forward slip (m/min) Please submit the final answers in 2 decimal placesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Engineering Design Process - Simplified; Author: College & Career Ready Labs │ Paxton Patterson;https://www.youtube.com/watch?v=KpWrHVo972g;License: Standard Youtube License