Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 55AP
To determine
The incidence angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spacer is cut from a playing
card of thickness 2.90 x 10-1 m
and used to separate one end
of two rectangular, optically flat,
3.00-cm long glass plates with
n = 1.55, as in Figure P24.24.
Figure P24.24 Problems 24
and 25.
Laser light at 594 nm shines
straight down on the top plate.
The plates have a length of 3.00 cm. (a) Count the number of
phase reversals for the interfering waves. (b) Calculate the separa-
tion between dark interference bands observed on the top plate.
An engineer is carrying out an experiment to determine the index of refraction for a partially reflective material. To do this, she aims a narrow beam of light at a sample of this material, which has a smooth surface. She then varies the angle of incidence. (The incident beam is traveling through air.)
The light that gets reflected by the sample is completely polarized when the angle of incidence is 59.5°.
(a)What index of refraction describes the material?
n =
(b)If some of the incident light (at ?i = 59.5°) enters the material and travels below the surface, what is the angle of refraction (in degrees)?
A ray of light consisting of blue light (wavelength 480 nm) and red light
(wavelength 670 nm) is incident on a thick piece of glass at 80°. What is
the angular separation between the refracted red and refracted blue
beams while they are in the glass? (The respective indices of refraction
for the blue light and the red light are 1.4636 and 1.4561.)
O 0.27°
0.33°
O 0.36°
O 0.46°
O 0.54°
Chapter 35 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 35.4 - Prob. 35.1QQCh. 35.5 - If beam is the incoming beam in Figure 34.10b,...Ch. 35.5 - Light passes from a material with index of...Ch. 35.7 - Prob. 35.4QQCh. 35.8 - Prob. 35.5QQCh. 35 - Prob. 1OQCh. 35 - Prob. 2OQCh. 35 - Prob. 3OQCh. 35 - Prob. 4OQCh. 35 - Prob. 5OQ
Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardLight is incident normal to the left side of a TiO2 prism (n = 2.62) in the shape of an equilateral triangle as shown. A thin dielectric film is placed on the top side of the prism. What is the maximum index of refraction that the film may have if the light is to be totally reflected by the thin film-prism interface? Thin film n = 2.62 O A. 1.31 О В. 1.85 Ос. 2.01 O D. 2.27arrow_forwardAn optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air is 1. ←cladding -corearrow_forward
- A ray of red light, for which n = 1.54, and a ray of violet light, for which n = 1.59, travel through a piece of glass. They meet right at the boundary between the glass and the air, and emerge into the air as one ray with an angle of refraction of 22.5°. What is the angle between the two rays in the glass?arrow_forwardX rays are typically used to kill off cancer cells, however an issue some radiologists run into is the damage an x-ray may do to surrounding tissue. Because of this, accuracy plays a key role in radiation therapy. Suppose you are a medical physicist, and you have been given the task of choosing a medium with a proper index of refraction to bend the x rays such that they only hit the tumor. Suppose you know that the x ray comes in at an angle of 20 degrees with respect to the normal of your second medium. You know the tumor expands out to 5 degrees on either side of the normal what is the minimum index of refraction needed for the x ray to hit the tumorarrow_forwardFigure P22.59 shows the path of a beam of light through severallayers with different indices of refraction. (a) If Θ1 = 30.0°,what is the angle Θ2 of the emerging beam? (b) What must the incident angle Θ1 be to have total internal reflection at thesurface between the medium with n = 1.20 and the mediumwith n = 1.00?arrow_forward
- Your answer is partially correct. The figure shows an optical fiber in which a central plastic core of index of refraction n, = 1.60 is surrounded by a plastic sheath of index of refraction n2 = 1.52. Light can travel along different paths within the central core, leading to different travel times through the fiber. This causes an initially short pulse of light to spread as it travels along the fiber, resulting in information loss. Consider light that travels directly along the central axis of the fiber and light that is repeatedly reflected at the critical angle along the core-sheath interface, reflecting from side to side as it travels down the central core. If the fiber length is 370 m, what is the difference in the travel times along these two routes? NUmber i 98.7 Units nsarrow_forwardA ray is traveling in material a when it reaches an interface with material b, where n < na. If the critical angle for total internal reflection at this interface is erit = 30.0°, what is the ratio of the speed of light in material a to the speed of light in material b, va/v6? O 1.6 O 0.50 O 0.25 O 1.0 O o o oarrow_forwardLight can travel from air into water. Some possible paths for the light ray in the water are shown in Figure OQ35.7. Which path will the light most likely follow? (a) A (b) B (c) C (d) D (e) Earrow_forward
- A 1.00-cm-thick by 4.00-cm-long glass plate is made up of two fused prisms. The top prism has an index of refraction of 1.486 and the bottom has an index of refraction of 1.878. A light ray is incident on the top face as shown in the figure to the right. The reflected ray A is completely linearly polarized. Determine the exit angle of this ray that pass through the prisms.arrow_forwarda. A ray of light enters a fiber optic cable with index of refraction n from air at an angle e as shown below. Let the angle 0 be 69°. For total internal reflection to occur at the cable-air interface, what must be the value of n? Dair - 1 n = Ꮎ θα ec narrow_forwardA transparent cylinder of radius R = 2.00 m has a mirrored surface on its right half, as shown in Figure P22.55 (page 800). A light ray traveling in air is incident on the left side of the cylinder. The incident light ray and the exiting light ray are parallel, and d = 2.00 m. Determine the index of refraction of the material.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning