Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 10OQ
(i)
To determine
Whether light can undergo total internal reflection and if so then which medium it must travel originally.
(ii)
To determine
Whether sound can undergo total internal reflection and if so then which medium it must travel originally.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sound passes from limestone, where it moves at a speedof 4000 m/s, into another unknown material. The angle of incidence at the interface is 24° and the angle of refraction in the unknown material is 38°. (a) Calculate the speed of sound in this material. (b) Draw pictures of each situation showing the interference between the media, the normal line, the incident, reflected and refracted rays and the angles of these rays to the normal line.
No glass is perfectly transparent. Mainly because of reflections, about 92% of light passes through an average sheet of clear windowpane. The 8% loss is not noticed through a single sheet, but through several sheets, the loss is apparent. How much light is transmitted by a double-paned window (one with two sheets of glass)?
a)If the refractive index of glass is 1.55 and the refractive index of air is 1.0003, what is the critical angle for total internal reflection at the glass/air interface?
b) If the refractive index of glass is 1.55 and the refractive index of the hydrated ion-selective film is 1.34, what is the critical angle for total internal reflection at the glass/film interface?
Chapter 35 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 35.4 - Prob. 35.1QQCh. 35.5 - If beam is the incoming beam in Figure 34.10b,...Ch. 35.5 - Light passes from a material with index of...Ch. 35.7 - Prob. 35.4QQCh. 35.8 - Prob. 35.5QQCh. 35 - Prob. 1OQCh. 35 - Prob. 2OQCh. 35 - Prob. 3OQCh. 35 - Prob. 4OQCh. 35 - Prob. 5OQ
Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardA large hall in a museum has a niche in one wall. On the floor plan, the niche appears as a semicircular indentation of radius 2.50 m. A tourist stands on the centerline of the niche, 2.00 m out from its deepest point, and whispers Hello. Where is the sound concentrated after reflection from the niche?arrow_forwardYou may have noticed that the eyes of cats appear to glow green in low light. This effect is due to the reflection of light by the tapetum lucidum, a highly reflective membrane just behind the retina of the eye. Light that has passed through the retina without hitting photoreceptors is reflected back to the retina, thus enabling the animal to see much better than humans in low light. Suppose the eye of a cat is 1.34 cm in diameter. Assume that the light enters the eye traveling parallel to the principal axis of the lens. If some of the light reflected off the tapetum lucidum escapes being absorbed by the retina, what is the horizontal distance ?from the retina to the point where the light will be focused? Neglect any effects due to the liquid in the eye. x = ? cm The refractive index of the liquid in the eye is about 1.4. How does this affect the location of the image relative to where it would be if the eye were filled with air?arrow_forward
- An object is placed halfway between a planar (flat) mirror and a diverging lens with a focal length of -25cm. The distance between the mirror and the lens is 30cm. You view the image of the object's reflection in the planar mirror by looking through the lens. Where does this image appear? Light with a wavelength of 420nm in air is incident on a thin film of water (n=1.333) on top of a plate of glass (n=1.56). Calculate the two smallest thickness for the water film that will produce dark spots from reflection. Paragraph Add a File BI U v v ON + v 11. >>arrow_forwardConsider light passing from air into water. What is the ratio of its wavelength in water, λw, to its wavelength in air, λa?arrow_forwardThe index of refraction of a glass rod is 1.48 at T = 20.0°C and varies linearly with temperature, with a coefficient of 2.50 x 10-5C⁰-1. The coefficient of linear expansion of the glass is 5.00 x 10-6C⁰-1. At 20.0 °C the length of the rod is 2.80 cm. A Michelson interferometer has this glass rod in one arm, and the rod is being heated so that its temperature increases at a rate of 5.00 C°/min. The light source has wavelength λ = 569 nm, and the rod initially is at T = 20.0°C. Part A How many fringes cross the field of view each minute? ΔΝ = Submit ΤΙ ΑΣΦ Request Answer < Return to Assignment Provide Feedback ? fringes/minutearrow_forward
- 1) A pulse of light takes 3.00 ns to travel through air from an emitter to a detector. When a piece of transparent material with a length of 35.0 cm is introduced into the light's path, the pulse takes 3.40 ns to travel that same distance. The piece of transparent material is held so that the pulse never changes direction. What is the speed of light in the transparent material? (in ns please) 2) A small red LED is placed on the principal axis 6.00 cm from a concave mirror that has a radius of curvature of 14.0 cm. The LED can be considered to be a point source. Find the image distance for the image of the LED that is created by the mirror. (in cm please. Image attached below) I appreciate the help. I've attempeted the first question multiple times and always end up with the wrong answer so I don't know what equation to use.arrow_forwardA beam of light propagating through water (nwater = 4/3) strikes a glass plate (nglass = 3/2) at 30° incident angle and is reflected. What is the angle of reflection and speed of the reflected beam? (c = speed of light in vacuum) a. 30°; c/2 b. 30°; 3c/4 c. 30°; 2c/3 d. 60°: 3c/4 e. 60°; 2c/3arrow_forwardThe index of refraction of a glass rod is 1.48 at T = 20.0°C and varies linearly with temperature, with a coefficient of 2.50 x 10-5/C°. The coefficient of linear expansion of the glass is 5.00 x 10-6/C°. At 20.0°C the length of the rod is 3.00 cm. A Michelson interferometer has this glass rod in one arm, and the rod is being heated so that its temperature increases at a rate of 5.00 C°/min. The light source has wavelength λ = 589 nm, and the rod initially is at T = 20.0°C. How many fringes cross the field of view each minute?arrow_forward
- A plane sound wave in air at 20°C, with wavelength 589 mm, is incident on a smooth surface of water at 25°C at an angle of incidence of 13.0°. Determine (a) the angle of refraction for the sound wave and (b) the wavelength of the sound in water. A narrow beam of sodium yellow light, with wavelength 589 nm in vacuum, is incident from air onto a smooth water surface at an angle of incidence of 13.08. Determine (c) the angle of refraction and (d) the wavelength of the light in water. (e) Compare and contrast the behavior of the sound and light waves in this problem.arrow_forwardSound waves undergo reflection and refraction, much as electromagnetic waves do. Here is one practical application of reflection and refraction in the field of health care: determining the location of a liver tumor. Suppose that a narrow beam of ultrasonic waves travels through surrounding tissue and enters the liver with an incidence angle of 51.0°. These inaudible sound waves travel 14.0% more slowly through the liver than through the medium that lies above. Suppose that the beam reflects off the tumor and emerges from the liver at a distance 13.0 cm from its entry point. Calculate the depth of the tumor (in cm) below the surface of the liver.arrow_forwardImpressionist painters such as Claude Monet, Maximilien Luce, and Georges Seurat created paintings with a large number of colored dots averaging about 2.20 mm in diameter. When a viewer is close to the canvas, all of the individual dots are discernible. As the viewer moves further from the canvas, the dots become irresolvable and blend. At what distance (in meters), would a viewer no longer be able to discern individual dots on the canvas? Assume that the wavelength of the light is 513 nm and the pupil of the viewer has a diameter of 3.90 mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning